Human Long Noncoding RNA Interactome: Detection, Characterization and Function.

Int J Mol Sci

Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland.

Published: February 2020

The application of a new generation of sequencing techniques has revealed that most of the genome has already been transcribed. However, only a small part of the genome codes proteins. The rest of the genome "dark matter" belongs to divergent groups of non-coding RNA (ncRNA), that is not translated into proteins. There are two groups of ncRNAs, which include small and long non-coding RNAs (sncRNA and lncRNA respectively). Over the last decade, there has been an increased interest in lncRNAs and their interaction with cellular components. In this review, we presented the newest information about the human lncRNA interactome. The term lncRNA interactome refers to cellular biomolecules, such as nucleic acids, proteins, and peptides that interact with lncRNA. The lncRNA interactome was characterized in the last decade, however, understanding what role the biomolecules associated with lncRNA play and the nature of these interactions will allow us to better understand lncRNA's biological functions in the cell. We also describe a set of methods currently used for the detection of lncRNA interactome components and the analysis of their interactions. We think that such a holistic and integrated analysis of the lncRNA interactome will help to better understand its potential role in the development of organisms and cancers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7037361PMC
http://dx.doi.org/10.3390/ijms21031027DOI Listing

Publication Analysis

Top Keywords

lncrna interactome
20
lncrna
8
better understand
8
interactome
6
human long
4
long noncoding
4
noncoding rna
4
rna interactome
4
interactome detection
4
detection characterization
4

Similar Publications

ANNInter: A platform to explore ncRNA-ncRNA interactome of Arabidopsis thaliana.

Comput Biol Chem

December 2024

Bioinformatics Lab, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India. Electronic address:

Eukaryotic transcriptomes are remarkably complex, encompassing not only protein-coding RNAs but also an expanding repertoire of noncoding RNAs (ncRNAs). In plants, ncRNA-ncRNA interactions (NNIs) have emerged as pivotal regulators of gene expression, orchestrating development and adaptive responses to stress. Despite their critical roles, the functional significance of NNIs remains poorly understood, largely due to a lack of comprehensive resources.

View Article and Find Full Text PDF
Article Synopsis
  • LINC01133 is a long non-coding RNA (lncRNA) that plays crucial roles in cancer, with this study focusing on its expression and impact in laryngeal squamous cell carcinoma (LSCC).
  • Integrative analysis of genetic data revealed LINC01133 is significantly downregulated in LSCC compared to normal tissues, and lower levels are linked to advanced tumor stages and lymph node metastasis.
  • The study suggests that LINC01133 may act as a tumor suppressor by disrupting microRNA interactions, indicating its potential diagnostic and therapeutic importance in LSCC.
View Article and Find Full Text PDF

Long intergenic noncoding (LINC)01270 is a 2278 bp transcript belonging to the intergenic subset of long noncoding (lnc)RNAs. Despite increased reports of LINC01270's involvement in different diseases, evident research on its effects on inflammation is yet to be achieved. In the present study, we investigated the potential role of LINC01270 in modulating the inflammatory response in the human monocytic leukemia cell line THP-1.

View Article and Find Full Text PDF

The formation of human collagen requires the presence of Prolyl 3-hydroxylase 1 (P3H1), but the regulatory mechanism of P3H1 remained insufficiently understood. Our study aimed to identify the role of P3H1 in clear cell renal cell carcinoma (ccRCC). P3H1 expression in ccRCC was validated using multiple databases and in vitro experiments.

View Article and Find Full Text PDF

Cuproptosis-related lncRNA JPX regulates malignant cell behavior and epithelial-immune interaction in head and neck squamous cell carcinoma via miR-193b-3p/PLAU axis.

Int J Oral Sci

November 2024

Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China.

The development, progression, and curative efficacy of head and neck squamous cell carcinoma (HNSCC) are influenced by complex interactions between epithelial and immune cells. Nevertheless, the specific changes in the nature of these interactions and their underlying molecular mechanisms in HNSCC are not yet fully understood. Cuproptosis, a form of programmed cell death that is dependent on copper, has been implicated in cancer pathogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!