Hydrophobins are a family of cysteine-rich proteins unique to filamentous fungi. The proteins are produced in a soluble form but self-assemble into organised amphipathic layers at hydrophilic:hydrophobic interfaces. These layers contribute to transitions between wet and dry environments, spore dispersal and attachment to surfaces for growth and infection. Hydrophobins are characterised by four disulphide bonds that are critical to their structure and function. Thus, obtaining correctly folded, soluble and functional hydrophobins directly from bacterial recombinant expression is challenging and in most cases, initial denaturation from inclusion bodies followed by oxidative refolding are required to obtain folded proteins. Here, we report the use of cell-free expression with E. coli cell lysate to directly obtain natively folded hydrophobins. All six of the hydrophobins tested could be expressed after optimisation of redox conditions. For some hydrophobins, the inclusion of the disulfide isomerase DsbC further enhanced expression levels. We are able to achieve a yield of up to 1 mg of natively folded hydrophobin per mL of reaction. This has allowed the confirmation of the correct folding of hydrophobins with the use of N-cysteine and N-H nuclear magnetic resonance experiments within 24 h of starting from plasmid stocks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pep.2020.105591 | DOI Listing |
mSphere
January 2025
Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Unlabelled: During infection, bacterial pathogens rely on secreted virulence factors to manipulate the host cell. However, in gram-positive bacteria, the molecular mechanisms underlying the folding and activity of these virulence factors after membrane translocation are not clear. Here, we solved the protein structures of two secreted parvulin and two secreted cyclophilin-like peptidyl-prolyl isomerase (PPIase) ATP-independent chaperones found in gram-positive streptococcal species.
View Article and Find Full Text PDFProtein Sci
February 2025
Graduate School of Engineering, Osaka University, Osaka, Japan.
Amyloid fibril formation of α-synuclein (αSN) is a hallmark of synucleinopathies. Although the previous studies have provided numerous insights into the molecular basis of αSN amyloid formation, it remains unclear how αSN self-assembles into amyloid fibrils in vivo. Here, we show that αSN amyloid formation is accelerated in the presence of two macromolecular crowders, polyethylene glycol (PEG) (MW: ~10,000) and dextran (DEX) (MW: ~500,000), with a maximum at approximately 7% (w/v) PEG and 7% (w/v) DEX.
View Article and Find Full Text PDFACS Nano
January 2025
Adolphe Merkle Institute, University of Fribourg, Fribourg 1700, Switzerland.
Biological nanopores offer a promising approach for single-molecule analysis of nucleic acids, peptides, and proteins. The work presented here introduces a biological nanopore formed by the self-assembly of complement component 9 (C9). This exceptionally large and cylindrical protein pore is composed of 20 ± 4 monomers of C9 resulting in a diameter of 10 ± 4 nm and an effective pore length of 13 nm.
View Article and Find Full Text PDFEven after folding, proteins transiently sample unfolded or partially unfolded intermediates, and these species are often at risk of irreversible alteration ( via proteolysis, aggregation, or post-translational modification). Kinetic stability, in addition to thermodynamic stability, can directly impact protein lifetime, abundance, and the formation of alternative, sometimes disruptive states. However, we have very few measurements of protein unfolding rates or how mutations alter these rates, largely due to technical challenges associated with their measurement.
View Article and Find Full Text PDFHuman Kv1.3, encoded by , is expressed in neuronal and immune cells. Its impaired expression or function produces chronic inflammatory disease and autoimmune disorders, the severity of which correlates with Kv1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!