Background: Peritoneal carcinomatosis (PC) from pancreatic ductal adenocarcinoma (PDAC) is fatal. Our preclinical study presents an effective treatment against PDAC PC using a novel oncolytic viral agent, CF33-hNIS-antiPDL1.

Study Design: CF33-hNIS-antiPDL1 is a genetically engineered chimeric orthopoxvirus, CF33, armed with the human Sodium Iodide Symporter (hNIS) and anti-PD-L1 antibody (anti-PD-L1). The in vitro cytotoxic ability of this virus against 5 PDAC cell lines was tested at various doses (multiplicity of infection [MOI] = 0.01, 0.1, 1, 10). Production and blockade function of virus-encoded anti-PD-L1 antibody were verified using immunoblot, immunoprecipitation, and PD-1/PD-L1 bioassay. In vivo mouse models of PC, with or without subcutaneous (SC) tumors, created by injecting AsPC-1-ffluc cells into nude mice, were treated with PBS or a single dose (1×10 plaque-forming units) of either intraperitoneal (IP) or IV injection of CF33-hNIS-antiPDL1. Mice with PC tumors were treated on days 0, 2, or 14 after tumor implantation.

Results: CF33-hNIS-antiPDL1 killed PDAC cells in a dose-dependent manner, achieving >90% cell killing by day 8. Cells infected with CF33-hNIS-antiPDL1 produced bioactive anti-PD-L1 antibody, which blocked PD-1/PD-L1 interaction. In vivo, a single dose of virus reduced tumor burden and prolonged survival of treated mice. It was observed that IP administration of CF33-hNIS-antiPDL1 was more effective than IV administration.

Conclusions: CF33-hNIS-antiPDL1 virus is effective in infecting and killing human PDACs and producing functional anti-PD-L1 antibody. Intraperitoneal delivery of CF33-hNIS-antiPDL1 effectively reduces peritoneal tumor burden and improves survival after only 1 dose and is superior to IV delivery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8787938PMC
http://dx.doi.org/10.1016/j.jamcollsurg.2019.12.027DOI Listing

Publication Analysis

Top Keywords

anti-pd-l1 antibody
16
cf33-hnis-antipdl1
8
single dose
8
tumor burden
8
anti-pd-l1
5
novel chimeric
4
chimeric immuno-oncolytic
4
virus
4
immuno-oncolytic virus
4
virus cf33-hnis-antipdl1
4

Similar Publications

Facile integration of a binary nano-prodrug with αPD-L1 as a translatable technology for potent immunotherapy of TNBC.

Acta Biomater

January 2025

Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, MOE Key Lab of Rare Pediatric Disease, University of South China, Hengyang 421001, China. Electronic address:

Immune checkpoint blockers (ICBs)-based immunotherapy is a favorable approach for efficient triple-negative breast cancer (TNBC) treatment. However, the therapeutic efficacy of ICBs is greatly compromised by immunosuppressive tumor microenvironments (TMEs) and low expression levels of programmed cell death ligand-1 (PD-L1). Herein, we constructed an amphiphilic prodrug by linking a hydrophobic STING agonist, MSA-2 and a hydrophilic chemotherapeutic drug, gemcitabine (GEM) via an ester bond, which can self-assemble into GEM-MSA-2 (G-M) nanoparticles (NPs) with a tumor growth inhibition (TGI) value of 87.

View Article and Find Full Text PDF

Background: Although chemoimmunotherapy is recommended for advanced nonsquamous non-small cell lung cancer (NSCLC) with low programmed cell death ligand 1 (PD-L1) expression, no head-to-head comparisons of immune checkpoint inhibitors (ICIs) have been performed. Therefore, we compared the effect and safety of regimens in these patients to guide evidence-based treatment.

Methods: This retrospective study included patients with advanced nonsquamous NSCLC with a PD-L1 tumor proportion score of 1% to 49% administered ICI combination platinum-based chemotherapy between May 2018 and May 2023 at 19 institutions in Japan.

View Article and Find Full Text PDF

Purpose: This research aimed to develop and assess a Lipiodol Pickering emulsion containing anti-Programmed cell Death Ligand 1 (PD-L1) antibodies through in vitro experiments.

Materials And Methods: The emulsion was created by combining Lipiodol with poly (lactic-co-glycolic acid) (PLGA) nanoparticles and anti-PD-L1 antibodies. Confocal laser microscopy was used to evaluate the encapsulation of the antibodies within the Pickering emulsion.

View Article and Find Full Text PDF

Co-blocking TIGIT and PVRIG using a novel bispecific antibody enhances anti-tumor immunity.

Mol Cancer Ther

January 2025

Jiangsu Hengrui Pharmaceutical Co. Ltd, Shanghai, China.

TIGIT and PVRIG are immune checkpoints co-expressed on activated T and NK cells, contributing to tumor immune evasion. Simultaneous blockade of these pathways may enhance therapeutic efficacy, positioning them as promising dual targets for cancer immunotherapy. This study aimed to develop a bispecific antibody (BsAb) to co-target TIGIT and PVRIG.

View Article and Find Full Text PDF

Immune-checkpoint-inhibitors (ICI) target key regulators of the immune system expressed by cancer cells that mask those from recognition by the immune system. They have improved the outcome for patients with various cancer types, such as melanoma. ICI-based therapy is frequently accompanied by immune-related adverse side effects (IRAEs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!