The mammalian two-hybrid system as a powerful tool for high-throughput drug screening.

Drug Discov Today

Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal. Electronic address:

Published: April 2020

Protein-protein interactions (PPIs) are the backbone of signaling pathways, responsible for the basis of cell communication and, when deregulated, several diseases. Consequently, identifying and modulating PPIs can unravel the pathophysiological mechanisms of diseases. The two-hybrid system, particularly the mammalian two-hybrid system (MTH), is an efficient technique to validate PPIs ex vivo. Combining MTH with high-throughput screening has a huge advantage in biomedical research. In this review, we describe methodologies developed from MTH and the role of these adaptations in PPI discovery. We also highlight the powerful contribution of MTH to the identification of disease-related PPIs and its use in the development of potential new drug screens.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.drudis.2020.01.022DOI Listing

Publication Analysis

Top Keywords

two-hybrid system
12
mammalian two-hybrid
8
system powerful
4
powerful tool
4
tool high-throughput
4
high-throughput drug
4
drug screening
4
screening protein-protein
4
protein-protein interactions
4
ppis
4

Similar Publications

Under salt stress, plasma membrane proteins regulate ion homeostasis and the balance between reactive oxygen species (ROS). In this study, we investigated the functions of two small membrane proteins-MsRCI2B (tailless) and MsRCI2E (tailed)-encoded by the RCI2 (Rare Cold Inducible 2) gene family in Medicago sativa (alfalfa). We identified the distinct subcellular localization and expression patterns of these proteins under salt stress.

View Article and Find Full Text PDF

Establishment of a Yeast Two-Hybrid-Based High-Throughput Screening Model for Selection of SARS-CoV-2 Spike-ACE2 Interaction Inhibitors.

Int J Mol Sci

January 2025

State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.

The recent coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has exerted considerable impact on global health. To prepare for rapidly mutating viruses and for the forthcoming pandemic, effective therapies targeting the critical stages of the viral life cycle need to be developed. Viruses are dependent on the interaction between the receptor-binding domain (RBD) of the viral Spike (S) protein (S-RBD) and the angiotensin-converting enzyme 2 (ACE2) receptor to efficiently establish infection and the following replicate.

View Article and Find Full Text PDF

The Exocyst Subunits EqSec5 and EqSec6 Promote Powdery Mildew Fungus Growth and Pathogenicity.

J Fungi (Basel)

January 2025

Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Haikou 570228, China.

The exocyst complex in eukaryotic cells modulates secretory vesicle transportation to promote exocytosis. The exocyst is also required for the hyphal growth and pathogenic development of several filamentous phytopathogens. Obligate biotrophic powdery mildew fungi cause considerable damage to many cash crops; however, the exocyst's roles in this group of fungi is not well studied.

View Article and Find Full Text PDF

The determinate inflorescence trait of L. is associated with various desirable agricultural characteristics. ( and ), which encode the transcription factor have previously been identified as candidate genes controlling this trait through map-based cloning.

View Article and Find Full Text PDF

Maintenance of neural progenitors requires Notch signaling in vertebrate development. Previous study has shown that Jagged2-mediated Notch signaling maintains proliferating neural progenitors in the ventral spinal cord. However, components for Jagged-mediated signaling remain poorly defined during late neurogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!