Geraniol is a commercially relevant plant-derived monoterpenoid that is a main component of rose essential oil and used as insect repellent. Geraniol is also a key intermediate compound in the biosynthesis of the monoterpenoid indole alkaloids (MIAs), a group of over 2000 compounds that include high-value pharmaceuticals. As plants naturally produce extremely small amounts of these molecules and their chemical synthesis is complex, industrially sourcing these compounds is costly and inefficient. Hence, microbial hosts suitable to produce MIA precursors through synthetic biology and metabolic engineering are currently being sought. Here, we evaluated the suitability of a eukaryotic microalga, the marine diatom , for the heterologous production of monoterpenoids. Profiling of endogenous metabolism revealed that , unlike other microbes employed for industrial production of terpenoids, accumulates free pools of the precursor geranyl diphosphate. To evaluate the potential for larger synthetic biology applications, we engineered through extrachromosomal, episome-based expression, for the heterologous biosynthesis of the MIA intermediate geraniol. By profiling the production of geraniol resulting from various genetic and cultivation arrangements, reached the maximum geraniol titer of 0.309 mg/L in phototrophic conditions. This work provides (i) a detailed analysis of endogenous terpenoid metabolism, (ii) a successful demonstration of extrachromosomal expression for metabolic pathway engineering with potential gene-stacking applications, and (iii) a convincing proof-of-concept of the suitability of as a novel production platform for heterologous monoterpenoids, with potential for complex pathway engineering aimed at the heterologous production of MIAs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssynbio.9b00455DOI Listing

Publication Analysis

Top Keywords

heterologous production
12
marine diatom
8
production monoterpenoids
8
synthetic biology
8
pathway engineering
8
production
6
heterologous
5
geraniol
5
extrachromosomal genetic
4
engineering
4

Similar Publications

Harnessing the Streptomyces-originating type I-E CRISPR/Cas system for efficient genome editing in Streptomyces.

Sci China Life Sci

January 2025

Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.

Since their discovery, CRISPR/Cas systems have significantly expanded the genetic toolbox, aiding in the exploration and enhanced production of natural products across various microbes. Among these, class 2 CRISPR/Cas systems are simpler and more broadly used, but they frequently fail to function effectively in many Streptomyces strains. In this study, we present an engineered class 1 type I CRISPR/Cas system derived from Streptomyces avermitilis, which enables efficient gene editing in phylogenetically distant Streptomyces strains.

View Article and Find Full Text PDF

Carnosol (CO) and carnosic acid (CA) are pharmaceutically important diterpenes predominantly produced in members of Lamiaceae, Salvia officinalis (garden sage), Salvia fruticosa and Rosmarinus officinalis. Nevertheless, availability of these compounds in plant system is very low. In an effort to improve the in planta content of these diterpenes in garden sage, SmERF6 (Salvia miltiorrhiza Ethylene Responsive Factor 6) transcription factor was expressed heterologously.

View Article and Find Full Text PDF

A Lambda-evo (λ) phage platform for Zika virus E protein display.

Appl Microbiol Biotechnol

January 2025

Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional No, 2508, C.P. 07360, Mexico City, Mexico.

One of the most significant bacteriophage technologies is phage display, in which heterologous peptides are exhibited on the virion surface. This work describes the display of λ decorative protein D linked to the E protein domain III of Zika virus (D-ZE), to the GFP protein (D-GFP), or to different domain III epitopes of the E protein (D-TD), exhibited on the surface of an in vitro evolved lambda phage (λ). This phage harbors a gene D deletion and was subjected to directed evolution using Escherichia coli W3110/pD-ZE as background.

View Article and Find Full Text PDF

Polyketide synthases (PKSs) are crucial multidomain enzymes in diverse natural product biosynthesis. Parrots use a type I PKS to produce a unique pigment called psittacofulvin in their feathers. In domesticated budgerigars and lovebirds, the same amino acid substitution (R644W) within malonyl/acetyltransferase (MAT) domain of this enzyme has been shown to cause the blue phenotype with no psittacofulvin pigmentation, proposing a strong evolutionary constraint on the mechanism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!