Circulating mucosal-associated invariant T cells in subjects with recurrent urinary tract infections are functionally impaired.

Immun Inflamm Dis

Division of Infectious Diseases, Department of Internal Medicine, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.

Published: March 2020

Background: Urinary tract infection recurrence is common, particularly in women and immunocompromised patients, such as renal transplant recipients (RTRs). Mucosal-associated invariant T (MAIT) cells play a role in the antibacterial response by recognizing bacterial riboflavin metabolites produced by bacteria such as Escherichia coli. Here, we investigated whether MAIT cells are involved in the pathogenesis of recurrent urinary tract infections (RUTIs).

Methods: Using multichannel flow cytometry, we characterized the MAIT cell phenotype and function in blood from immunocompetent adults with (n = 13) and without RUTIs (n = 10) and in RTRs with (n = 9) and without RUTIs (n = 10).

Results: There were no differences in the numbers of MAIT cells between the study groups. MAIT cells in patients with RUTI expressed T-bet more often than those in controls. MAIT cells from immunocompetent RUTI participants required more antigen-presenting cells coincubated with E. coli to evoke a similar cytokine and degranulation response than those from controls. This effect was absent in the RTR with RUTI vs RTR control groups, where the overall percentage of MAIT cells that responded to stimulation was already reduced.

Conclusion: Circulating MAIT cells in immunocompetent individuals with RUTIs respond to bacterial stimuli with reduced efficacy, which suggests that they are involved in the pathogenesis of RUTIs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7016840PMC
http://dx.doi.org/10.1002/iid3.287DOI Listing

Publication Analysis

Top Keywords

mait cells
28
urinary tract
12
cells
9
mucosal-associated invariant
8
recurrent urinary
8
tract infections
8
mait
8
involved pathogenesis
8
cells immunocompetent
8
circulating mucosal-associated
4

Similar Publications

Tissue-resident lymphocytes (TRLs) provide a front-line immunological defense mechanism uniquely placed to detect perturbations in tissue homeostasis. The heterogeneous TRL population spans the innate to adaptive immune continuum, with roles during normal physiology in homeostatic maintenance, tissue repair, pathogen detection, and rapid mounting of immune responses. TRLs are especially enriched in the liver, with every TRL subset represented, including liver-resident natural killer cells; tissue-resident memory B cells; conventional tissue-resident memory CD8, CD4, and regulatory T cells; and unconventional gamma-delta, natural killer, and mucosal-associated invariant T cells.

View Article and Find Full Text PDF

Introduction: Plaques are a hallmark feature of Alzheimer's disease (AD). We found that the loss of mucosal-associated invariant T (MAIT) cells and their antigen-presenting molecule MR1 caused a delay in plaque pathology development in AD mouse models. However, it remains unknown how this axis is impacting dystrophic neurites.

View Article and Find Full Text PDF

MAIT cells modulating the oral lichen planus immune microenvironment: a cellular crosstalk perspective.

Inflamm Res

January 2025

Departments of Oral Medicine, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China.

Mucosal-associated invariant T (MAIT) cells, a type of T lymphocytes with innate-like characteristics, are crucial in bridging innate and adaptive immunity. When activated, MAIT cells release various inflammatory molecules and swiftly respond to antigens. Notably, numerous studies highlight the significant impact of MAIT cells on tumors and various immune disorders by influencing the immune microenvironment.

View Article and Find Full Text PDF

Single-cell atlas of the pregnant equine endometrium before and after implantation.

Biol Reprod

January 2025

Department of Biomedical Sciences, Baker Institute for Animal Health, Cornell University, Ithaca, NY 14853.

Embryo implantation in the mare occurs just over one month after fertilization, coinciding with the production of chorionic gonadotropin. The factors that regulate this late implantation in the mare, and whether they are unique to horses or shared with more invasive embryo implantation in other species, remain poorly understood. This study aimed to determine and compare the transcriptome and subpopulations of endometrial cells before and after embryo implantation in the horse.

View Article and Find Full Text PDF

The T cell antigen presentation platform MR1 consists of 6 allomorphs in humans that differ by no more than 5 amino acids. The principal function of this highly conserved molecule involves presenting microbial metabolites to the abundant mucosal-associated invariant T (MAIT) cell subset. Recent developments suggest that the role of MR1 extends to presenting antigens from cancer cells, a function dependent on the K43 residue in the MR1 antigen binding cleft.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!