Meiotic drivers are selfish alleles that can force their transmission into more than 50% of the viable gametes made by heterozygotes. Meiotic drivers are known to cause infertility in a diverse range of eukaryotes and are predicted to affect the evolution of genome structure and meiosis. The wtf gene family of Schizosaccharomyces pombe includes both meiotic drivers and drive suppressors and thus offers a tractable model organism to study drive systems. Currently, only a handful of wtf genes have been functionally characterized and those genes only partially reflect the diversity of the wtf gene family. In this work, we functionally test 22 additional wtf genes for meiotic drive phenotypes. We identify eight new drivers that share between 30-90% amino acid identity with previously characterized drivers. Despite the vast divergence between these genes, they generally drive into >85% of gametes when heterozygous. We also identify three wtf genes that suppress other wtf drivers, including two that also act as autonomous drivers. Additionally, we find that wtf genes do not underlie a weak (64% allele transmission) meiotic driver on chromosome 1. Finally, we find that some Wtf proteins have expression or localization patterns that are distinct from the poison and antidote proteins encoded by drivers and suppressors, suggesting some wtf genes may have non-meiotic drive functions. Overall, this work expands our understanding of the wtf gene family and the burden selfish driver genes impose on S. pombe.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7032740 | PMC |
http://dx.doi.org/10.1371/journal.pgen.1008350 | DOI Listing |
bioRxiv
December 2024
Stowers Institute for Medical Research, Kansas City, Missouri, United States of America.
Killer meiotic drivers are selfish DNA loci that sabotage the gametes that do not inherit them from a driver+/driver- heterozygote. These drivers often employ toxic proteins that target essential cellular functions to cause the destruction of driver- gametes. Identifying the mechanisms of drivers can expand our understanding of infertility and reveal novel insights about the cellular functions targeted by drivers.
View Article and Find Full Text PDFGenome Biol Evol
October 2024
National Institute of Biological Sciences, Beijing 102206, China.
Killer meiotic drivers are a class of selfish genetic elements that bias inheritance in their favor by destroying meiotic progeny that do not carry them. How killer meiotic drivers evolve is not well understood. In the fission yeast, Schizosaccharomyces pombe, the largest gene family, known as the wtf genes, is a killer meiotic driver family that causes intraspecific hybrid sterility.
View Article and Find Full Text PDFmBio
February 2023
Commonwealth Scientific and Industrial Research Organisation, St Lucia, Queensland, Australia.
Fungal spore killers are a class of selfish genetic elements that positively bias their own inheritance by killing non-inheriting gametes following meiosis. As killing takes place specifically within the developing fungal ascus, a tissue which is experimentally difficult to isolate, our understanding of the mechanisms underlying spore killers are limited. In particular, how these loci kill other spores within the fungal ascus is largely unknown.
View Article and Find Full Text PDFPLoS Genet
December 2022
Stowers Institute for Medical Research, Kansas City, Missouri, United States of America.
Meiotic drivers bias gametogenesis to ensure their transmission into more than half the offspring of a heterozygote. In Schizosaccharomyces pombe, wtf meiotic drivers destroy the meiotic products (spores) that do not inherit the driver from a heterozygote, thereby reducing fertility. wtf drivers encode both a Wtfpoison protein and a Wtfantidote protein using alternative transcriptional start sites.
View Article and Find Full Text PDFPLoS Genet
October 2022
Stowers Institute for Medical Research, Kansas City, Missouri, United States of America.
Numerous genes required for sexual reproduction remain to be identified even in simple model species like Schizosaccharomyces pombe. To address this, we developed an assay in S. pombe that couples transposon mutagenesis with high-throughput sequencing (TN-seq) to quantitatively measure the fitness contribution of nonessential genes across the genome to sexual reproduction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!