The clinical use, safety and effectiveness of ceftolozane/tazobactam among 13 patients 3 months to 19 years of age infected with multidrug-resistant Pseudomonas aeruginosa are described. All but one patient achieved clinical cure after initial treatment. Adverse drug events attributed to treatment included transaminitis and neutropenia which occurred in 2 patients and resolved upon dose reduction.

Download full-text PDF

Source
http://dx.doi.org/10.1097/INF.0000000000002593DOI Listing

Publication Analysis

Top Keywords

multidrug-resistant pseudomonas
8
pseudomonas aeruginosa
8
ceftolozane/tazobactam treatment
4
treatment multidrug-resistant
4
aeruginosa infections
4
infections children
4
children clinical
4
clinical safety
4
safety effectiveness
4
effectiveness ceftolozane/tazobactam
4

Similar Publications

Arsenic-induced modulation of virulence and drug resistance in Pseudomonas aeruginosa.

J Hazard Mater

January 2025

Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610213, China. Electronic address:

Arsenic contamination of water sources, whether from natural or industrial origins, represents a significant risk to human health. However, its impact on waterborne pathogens remains understudied. This research explores the effects of arsenic exposure on the opportunistic pathogen Pseudomonas aeruginosa, a bacterium found in diverse environments.

View Article and Find Full Text PDF

Triggered by the urgent need to tackle the global crisis of multidrug-resistant bacterial infections, in this work, we present a way to overcome chloramphenicol resistance by introducing modifications based on the glycosylation of its hydroxyl groups. The synthesized derivatives demonstrate complete resistance to the action of recombinant chloramphenicol acetyltransferase (CAT) from Escherichia coli and efficacy against methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli ESBL, and Pseudomonas aeruginosa ATCC 27853. Glycosylation gives chloramphenicol an additional advantage - the stable glycosidic form is less toxic to human dermal fibroblasts and has significantly better water solubility than non-glycosylated chloramphenicol.

View Article and Find Full Text PDF

Inovirus-Encoded Peptides Induce Specific Toxicity in .

Viruses

January 2025

Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China.

is a common opportunistic pathogen associated with nosocomial infections. The primary treatment for infections typically involves antibiotics, which can lead to the emergence of multidrug-resistant strains. Therefore, there is a pressing need for safe and effective alternative methods.

View Article and Find Full Text PDF

To evaluate the real-world evidence of ceftazidime-avibactam (CAZ-AVI) compared to intravenous colistin for the treatment of multidrug-resistant (MDR) infections. This is a multicenter, retrospective cohort study conducted in the period between 2017 and 2023 at five institutions for patients who received either CAZ-AVI or colistin-based regimens for treating MDR infections. Outcomes were compared using multivariate logistic regression analysis.

View Article and Find Full Text PDF

Healthcare-associated infections (HAIs) significantly increase morbidity, mortality, length of hospital stays, and costs, particularly among ICU patients. Despite standard interventions, catheter-associated urinary tract infections (CAUTI) and central line-associated bloodstream infections (CLABSI) remain major HAI contributors. This study evaluated the efficacy of daily 2% chlorhexidine gluconate (CHG) bathing in reducing HAI incidence, specifically CAUTI, CLABSI, and multidrug-resistant organisms (MDROs), in a 20-bed ICU at a regional hospital.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!