The surface potential of nanoparticles plays a key role in numerous applications, such as drug delivery and cellular uptake. The estimation of the surface potential of nanoparticles as drug carriers or contrast agents is important for the design of nanoparticle-based biomedical platforms. Herein, we report the direct measurement of the surface potential of individual gold nanorods (GNRs) via Kelvin probe force microscopy (KPFM) at the nanoscale. GNRs were capped by a surfactant, cetyltrimethylammonium bromide (CTAB), which was removed by centrifugation. CTAB removal is essential for GNR-based biomedical applications because of the cytotoxicity of CTAB. Applying KPFM analysis, we found that the mean surface potential of the GNRs became more negative as the CTAB was removed from the GNR. The results indicate that the negative charge of GNRs is covered by the electrostatic charge of the CTAB molecules. Similar trends were observed in experiments with gold nanospheres (GNS) capped by citrates. Overall, KPFM-based techniques characterize the surfactant of individual nanoparticles (i.e. GNR or GNS) with high resolution by mapping the surface potential of a single nanoparticle, which aids in designing engineered nanoparticles for biomedical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/ab73b7 | DOI Listing |
Sci Total Environ
January 2025
Department of Animal Ecology & Systematics, Justus Liebig University, Giessen, Germany; Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, USA.
The pollution of marine environments with plastics, particularly microplastic (MP, i.e., plastic particles <5 mm), is a major threat to marine biota, including corals.
View Article and Find Full Text PDFBiomater Adv
January 2025
Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000 Lille, France. Electronic address:
Abdominal hernia repair is a common surgical procedure, involving in most cases the use of textile meshes providing a mechanical barrier to consolidate the damaged surrounding tissues and prevent the resurgence of the hernia. However, in more than half cases postoperative complications such as adhesions and infections occur at the surface of the mesh, leading to chronic pain for the patient and requiring the removal of the implant. One of the most promising strategies to reduce the risk of postoperative adhesions and infections is to add a physical barrier between the mesh and the abdominal walls.
View Article and Find Full Text PDFAmmonia, a major stress-inducing factor in aquaculture, contributes a significant challenge in maintaining sustainable fish production. Addressing this issue requires environmentally and economically sustainable solutions. This study explores the use of readily available and environmentally friendly porous lignocellulosic luffa sponge as a biostimulator, with a combination of three medicinal and aromatic plants(MAPs) viz.
View Article and Find Full Text PDFNat Prod Res
January 2025
Postgraduate Program in Biotechnology Applied to Agriculture, University of Paraná, Umuarama, Brazil.
is known for its potential antioxidant and anti-inflammatory properties, attributed to triterpenes, flavonoids, and tannins. This study aimed to optimise the extraction process for aerial parts of using vortex extraction. A Box-Behnken experimental design coupled with response surface methodology was employed to evaluate the effects of three independent variables: sample-to-solvent ratio, velocity, and temperature.
View Article and Find Full Text PDFNano Lett
January 2025
Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
Developing sustainable structural materials to replace traditional carbon-intensive structural materials fundamentally reshapes the concept of circular development. Herein, we propose an interface engineering strategy that utilizes water as a liquid medium to replace the residual air within natural wood. This approach minimizes the absorption of water-based softening agents by microcapillary channels of wood, enabling the controlled softening of the cell walls.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!