The present work highlights the implications of supramolecular interaction and metal coordination on the self-assembly behavior and bactericidal potential of salicaldehyde-(C1) and napthaldehyde-based (C2) amphiphiles against methicillin-resistant (MRSA). LB trough and atomic force microscope (AFM) analysis indicated the propensity of the amphiphiles to form a monolayer as well as spherical aggregates, with the critical micelle concentration (CMC) for C2 (7.0 μM) being lower than C1 (18.5 μM) in water. Formation of an amphiphile-metal complex was evidenced by ESI-MS, FTIR, FETEM-EDX, and ITC analysis. Growth of MRSA 100 cells was remarkably impaired in the presence of 5.0 μM C1 or 20 μM C2 as compared to free cells or cells grown in the presence of equivalent levels of amphiphile-metal complexes, suggesting that the amphiphiles perhaps sequester metal and induce metal starvation in MRSA. C1 and C2 rendered superior membrane damage in MRSA and were less toxic to human embryonic kidney (HEK 293) cells as compared to their metal complexes. C1 and C2 rendered a dose-dependent inhibition of biofilm formation, while revival of biofilm upon Zn(II) addition suggested that zinc starvation rendered by the amphiphiles may induce biofilm inhibition. C1 imposed a concentration-dependent metal starvation response in MRSA as there was an upregulation of the gene and downregulation of gene, which are involved in synthesis of the zincophore staphylopine (Stp) and transport of the Stp-Zn complex, respectively. ITC analysis revealed that binding of C1 and C2 to staphylococcal lipoteichoic acid (LTA) was stronger than the corresponding Zn(II) complexes, which perhaps accounted for the higher bactericidal potency of the amphiphiles. The study provides a fundamental understanding on how the chemistry-driven multimodal interaction of the amphiphile translates into growth inhibition and metal starvation in MRSA and advances the idea of combating drug resistance in pathogenic bacteria through amphiphiles, which are pluri-active.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.9b03073 | DOI Listing |
Small
January 2025
Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China.
Complexity of tumor and its microenvironment as obstacles often restrict traditional tumor therapies. Enzyme/nanozyme-mediated catalytic therapy has been emerged, but the efficacy of single catalytic therapy is still moderate. Inspired by the concepts of catalytic and synergetic therapy, an enzyme-nanozyme cascade catalysis (ENCAT)-enhanced tumor therapy is developed.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Henan International Joint Laboratory of Tumor Theranostic Cluster Materials, Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, 450001, Zhengzhou, China. Electronic address:
Background: Integrating natural enzymes and nanomaterials exhibiting tailored enzyme-like activities is an effective strategy for the application of cascade reactions. It is essential to develop a highly efficient and robust glucose oxidase-catalase (GOx-CAT) cascade system featuring controllable enzyme activity, a reliable supply of oxygen, and improved stability for glucose depletion in cancer starvation therapy. However, the ambiguous relationship between structure and performance, and the difficulty in controlling enzyme-mimic activity, significantly hinder their broader application.
View Article and Find Full Text PDFNPJ Biofilms Microbiomes
January 2025
Department of Biology, University of Padua, via U. Bassi 58/b, 35131, Padova, Italy.
Biomethanation is a crucial process occurring in natural and engineered systems which can reduce carbon dioxide to methane impacting the global carbon cycle. However, little is known about the effect of on-and-off gaseous provision and micronutrients on bioconversion. Here, anaerobic microbiomes underwent intermittent feeding with incremental starvations and selective metal supplementation to assess the impact of hydrogen and carbon dioxide availability on microbial physiology.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
Colon cancer is a major global health threat. Early detection and treatment are crucial for improving survival rates. Conventional methods, like colonoscopies and CT scans, have limitations, emphasizing the need for innovative strategies.
View Article and Find Full Text PDFmBio
December 2024
Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA.
Bacteria encounter numerous stressors in their constantly changing environments and have evolved many methods to deal with stressors quickly and effectively. One well-known and broadly conserved stress response in bacteria is the stringent response, mediated by the alarmone (p)ppGpp. (p)ppGpp is produced in response to amino acid starvation and other nutrient limitations and stresses and regulates both the activity of proteins and expression of genes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!