Lactobacillus plantarum YW11 capability to convert linoleic acid into conjugated linoleic acid and other metabolites was studied in a dose-dependent manner by supplementing LA at different concentrations. L. plantarum YW11 displayed a uniform distinctive growth curve of CLA and other metabolites at concentrations of LA ranging from 1% (w/v) to 10% (w/v), with slightly increased growth at higher LA concentrations. The biotransformation capability of L. plantarum YW11 evaluated by GC-MS revealed a total of one CLA isomer, i.e. 9-cis,11-trans-octadecadienoic acid, also known as the rumenic acid (RA), one linoleic acid isomer (linoelaidic acid), and LA metabolites: (E)-9-octadecenoic acid ethyl ester, trans, trans-9,12-octadecadienoic acid, propyl ester and stearic acid. All the metabolites of linoleic acid were produced from 1 to 10% LA supplemented MRS media, while surprisingly the only conjugated linoleic acid compound was produced at 10% LA. To assess the presence of putative enzymes, responsible for conversion of LA into CLA, in silico characterization was carried out. The in silico characterization revealed presence of four enzymes (10-linoleic acid hydratase, linoleate isomerase, acetoacetate decarboxylase and dehydrogenase) that may be involved in the production of CLA (rumenic acid) and LA isomers. The biotransformation ability of L. plantarum YW11 to convert LA into RA has great prospects for biotechnological and industrial implications that could be exploited in the future scale-up experiments.

Download full-text PDF

Source
http://dx.doi.org/10.18388/abp.2020_5095DOI Listing

Publication Analysis

Top Keywords

linoleic acid
24
plantarum yw11
20
acid
15
silico characterization
12
rumenic acid
12
acid metabolites
12
lactobacillus plantarum
8
conjugated linoleic
8
produced 10%
8
linoleic
6

Similar Publications

The urgent need to address the growing problem of antimicrobial resistance in multidrug-resistant bacteria requires the development of pioneering approaches to treatment. The present study aims to evaluate the antimicrobial potential of the essential oils (EOs) of Moringa oleifera (moringa), Cinnamomum verum (cinnamon), and Nigella sativa (black seed) and the synergistic effect of the mixture of these oils against Staphylococcus aureus MCC 1351. Statistical modeling revealed cinnamon oil had the highest individual antimicrobial potency, followed by black seed oil.

View Article and Find Full Text PDF

The and isomers of conjugated linoleic acid (CLA) are associated with anticancer and lipolytic effects in tissues, respectively, but in lactating cows, the latter isomer reduces the milk fat concentration, a detrimental aspect for the dairy industry, as it reduces the yield of milk derivatives. Therefore, the objective of this study was to evaluate the effect of providing protected palmitic acid (PA) to grazing lactating Holstein cows supplemented with soybean oil as a source of conjugated linoleic acid, on milk production, fat concentration and mitigation of milk fat depression. Nine multiparous Holstein cows were used, distributed in three groups of three cows each, with initial means of days in milk, live weight, milk production, and number of calvings: 124 ± 16 days, 494 ± 53 kg, 20.

View Article and Find Full Text PDF

Tender ginger is often used a fresh vegetable but hard to storage due to the delicate skin, high moisture content and prone to spoilage. In order to develop suitable preservation technology for tender ginger, the effects of vacuum packaging combined with different preservation temperatures (20-25 °C room temperature, 4 °C and 10 °C) on tender ginger shelf life were investigated. The results indicated that vacuum packaging combined with 4 °C (VP4) preservation could easily cause cold damage and postharvest physiological fluctuations.

View Article and Find Full Text PDF

Supercritical CO modified by polar solvents can extract a wide variety of polar and non-polar chemical components compared to conventional methods. The current study aims to extract Rivas (Rheum ribes) flower using the ethanol modified supercritical CO (SCO-EOH) method; analyze its chemical compounds and bioactivity, encapsulate the extract in maltodextrin, gum-Arabic (GA), and their combination (GA + MD) using the spray drying method and investigate the differences among microparticles using Principal Component Analysis (PCA). The Rivas extract obtained by the SCO-EOH method was a rich source of unsaturated fatty acids (mainly linoleic acid: 57.

View Article and Find Full Text PDF

The PI4K2A gene positively regulates lipid synthesis in bovine mammary epithelial cells and attenuates the inhibitory effect of t10,c12-CLA on lipid synthesis.

Sci Rep

January 2025

College of Animal Science and Technology, Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, Ningxia University, Yinchuan, 750021, China.

Currently, the identification of valuable candidate genes affecting milk fat synthesis in dairy cows is still limited, and the specific regulatory mechanism is still unknown. In this study, we used primary bovine mammary epithelial cells(BMECs)as a model and utilized overexpression and knockdown techniques for the PI4K2A gene to investigate the specific mechanisms by which it regulates lipid metabolism in BMECs. We studied whether PI4K2A regulates the inhibition of trans-10, cis-12 conjugated linoleic acid (t10,c12-CLA) on lipid synthesis in BMECs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!