Estimating the power of sequence covariation for detecting conserved RNA structure.

Bioinformatics

Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.

Published: May 2020

Unlabelled: Pairwise sequence covariations are a signal of conserved RNA secondary structure. We describe a method for distinguishing when lack of covariation signal can be taken as evidence against a conserved RNA structure, as opposed to when a sequence alignment merely has insufficient variation to detect covariations. We find that alignments for several long non-coding RNAs previously shown to lack covariation support do have adequate covariation detection power, providing additional evidence against their proposed conserved structures.

Availability And Implementation: The R-scape web server is at eddylab.org/R-scape, with a link to download the source code.

Supplementary Information: Supplementary data are available at Bioinformatics online.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7214042PMC
http://dx.doi.org/10.1093/bioinformatics/btaa080DOI Listing

Publication Analysis

Top Keywords

conserved rna
12
rna structure
8
lack covariation
8
estimating power
4
power sequence
4
covariation
4
sequence covariation
4
covariation detecting
4
conserved
4
detecting conserved
4

Similar Publications

Microbial communities associated with the skin, gill, and gut of large yellow croaker (Larimichthys crocea).

BMC Microbiol

January 2025

Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Key Laboratory of Biomedicine and Advanced Dosage Forms, School of Life Sciences, Taizhou University, Taizhou, 318000, Zhejiang Province, China.

The microbiota inhabiting the surface of fish mucosal tissue play important roles in the nutrition, metabolism and immune system of their host. However, most investigations on microbial symbionts have focused on the fish gut, but the microbiota associated with external mucosal tissues (such as the skin and gill) is poorly understood. This study characterised the traits and dynamic of microbial communities associated with the skin, gill and gut of large yellow croaker (Larimichthys crocea) culturing with net enclosures or pens at different sampling times (with seasonal transition).

View Article and Find Full Text PDF

The maize mTERF18 regulates transcriptional termination of the mitochondrial nad6 gene and is essential for kernel development.

J Genet Genomics

January 2025

National Engineering Laboratory of Crop Stress Resistance, College of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China. Electronic address:

Mitochondria are semi-autonomous organelle present in eukaryotic cells, containing their own genome and transcriptional machinery. However, their functions are intricately linked to proteins encoded by the nuclear genome. Mitochondrial transcription termination factors (mTERFs) are nucleic acid-binding proteins involved in RNA splicing and transcription termination within plant mitochondria and chloroplasts.

View Article and Find Full Text PDF

RBBP6 anchors pre-mRNA 3' end processing to nuclear speckles for efficient gene expression.

Mol Cell

January 2025

Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA. Electronic address:

Pre-mRNA 3' processing is an integral step in mRNA biogenesis. However, where this process occurs in the nucleus remains unknown. Here, we demonstrate that nuclear speckles (NSs), membraneless organelles enriched with splicing factors, are major sites for pre-mRNA 3' processing in human cells.

View Article and Find Full Text PDF

Monocarboxylate transporter 4 (MCT-4) is involved in various metabolic processes which are crucial in maintaining cellular pH and energy metabolism, and thus influence the tumor microenvironment. The study is aimed to rationally design effective Small interfering RNA (siRNA) that can silence MCT-4. We utilized a comprehensive workflow integrating multiple tools such as siDirect version 2.

View Article and Find Full Text PDF

PARL regulates porcine oocyte meiotic maturation by mediating mitochondrial activity.

Theriogenology

January 2025

Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China. Electronic address:

PARL is a rhomboid membrane protein that plays a crucial role in regulating the metabolism and maintaining the homeostasis of mitochondria which provide important energy and material reserves for oocyte maturation. However, the impact of PARL on oocyte maturation remains poorly understood. Here, we elucidated the pivotal role of PARL in oocyte maturation through its regulatory effects on mitochondrial activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!