To research the influence and mechanism of gold nanoparticles (AuNPs) with different size for HK-2 cells (kidney normal cells) and 786-0 cells (kidney cancer cells). HK-2 cells and 786-0 cells were treated with 5 and 200 nm AuNPs at 1 and 10 μg/ml. The cell viability, intracellular reactive oxygen species levels, cell apoptosis, cell autophagy, and related cell signaling pathways were analyzed. In HK-2 cells, AuNPs reduced the activity of Akt and mTOR and upregulated the expression of LC3 II. In 786-0 cells, the activity of p38 was upregulated, which leaded to the increase of caspase 3 and initiated apoptosis. AuNPs of 5 and 200 nm at 10 μg/ml exerted antitumor effect by prompting apoptosis and inhibiting proliferation, while autophagy was activated to protect HK-2 cells from AuNPs-induced cytotoxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2217/nnm-2019-0417 | DOI Listing |
Front Pharmacol
January 2025
School of Pharmacy, Shanghai Jiaotong University, Shanghai, China.
Objective: The aim of this study was to investigate the effect of curcumin nanocrystals (Cur-NCs) on ferroptosis in high-glucose (HG)-induced HK-2 cells and streptozotocin (STZ)-induced diabetic nephropathy model (DN) rats. The purpose is to determine whether Cur NCs can become a promising treatment option for diabetes nephropathy by reducing ferroptosis.
Methods: Cur-NCs were prepared using microfluidic technology and studied using dynamic light scattering and transmission electron microscopy.
Biochem Biophys Rep
March 2025
Department of Nephrology, Pu'er People's Hospital, Pu'er, Yunnan, China.
Background: Chronic kidney disease (CKD) has become a worldwide health problem and the incidence rate and mortality of CKD have been rising. Renal fibrosis (RF) is the final common pathological feature of almost all kinds of CKD and Epithelial-mesenchymal transition (EMT) is the predominant stage of RF. β-catenin is a key component of the Wnt signaling pathway, which has been fully proven to promote EMT.
View Article and Find Full Text PDFAppl Biochem Biotechnol
January 2025
Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, 18Th Zhongshan 2Nd Road, Baise, 533000, Guangxi, China.
A growing body of evidence suggests the involvement of long noncoding ribose nucleic acids (lncRNAs) in acute kidney injury (AKI). This study focused on the mechanistic role of lncRNA small nucleolar RNA host gene 12 (SNHG12) in ischemia/reperfusion (I/R)-mediated AKI. A model of hypoxia/reoxygenation (H/R) was created using human kidney cells (HK-2).
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, China.
The cocontamination of food by several mycotoxins and heavy metals poses significant health risks, and their combined toxic effects remain poorly understood. Particularly, specific studies exploring their combined impact on ferroptosis remain limited. In this work, we investigated the combined toxic effects of a mycotoxin, called deoxynivalenol (DON), and a heavy metal, called plumbum (Pb), and explored the potential mechanisms of DON and Pb co-occurrence via excessive ROS-induced ferroptosis in HK-2 cells.
View Article and Find Full Text PDFKidney Res Clin Pract
January 2025
Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China.
Background: Cisplatin is widely used in clinical practice, but its nephrotoxicity severely limits its use. Previous studies have shown that cisplatin-induced acute kidney injury (AKI) is closely related to mitochondrial damage and that alleviating mitochondrial dysfunction can alleviate cisplatin-induced AKI. Methylcrotonyl‑CoA carboxylase 2 (MCCC2) is mainly located in mitochondria, where it catalyzes the catabolism of leucine and maintains mitochondrial function; however, the role of MCCC2 in cisplatin-induced renal injury has not yet been studied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!