AI Article Synopsis

  • Cleavable cross-linking technology needs further MS/MS analysis for clear identification of cross-linked peptides, which can be complicated due to sensitivity and fragmentation.
  • A new dual cleavable cross-linking technology (DUCCT) utilizes two mass spectrometry methods (CID and ETD) to improve accuracy by providing different signature ions for the same cross-linked peptide.
  • The introduction of an enrichment-based photocleavable DUCCT (PC-DUCCT-biotin) and the development of a software tool, Cleave-XL, helps analyze cross-linked products and automate the identification of protein structures with high confidence.

Article Abstract

Cleavable cross-linking technology requires further MS/MS of the cleavable fragments for unambiguous identification of cross-linked peptides. These spectra are sometimes very ambiguous due to the sensitivity and complex fragmentation pattern of the peptides with the cross-linked residues. We recently reported a dual cleavable cross-linking technology (DUCCT), which can enhance the confidence in the identification of cross-linked peptides. The heart of this strategy is a novel dual mass spectrometry cleavable cross linker that can be cleaved preferentially by two differential tandem mass spectrometry methods, collision induced dissociation and electron transfer dissociation (CID and ETD). Different signature ions from two different mass spectra for the same cross-linked peptide helped identify the cross-linked peptides with high confidence. In this study, we developed an enrichment-based photocleavable DUCCT (PC-DUCCT-biotin), where cross-linked products were enriched from biological samples using affinity purification, and subsequently, two sequential tandem (CID and ETD) mass spectrometry processes were utilized. Furthermore, we developed a prototype software called Cleave-XL to analyze cross-linked products generated by DUCCT. Photocleavable DUCCT was demonstrated in standard peptides and proteins. Efficiency of the software tools to search and compare CID and ETD data of photocleavable DUCCT biotin in standard peptides and proteins as well as regular DUCCT in protein complexes from immune cells were tested. The software is efficient in pinpointing cross-linked sites using CID and ETD cross-linking data. We believe this new DUCCT and associated software tool Cleave-XL will advance high confidence identification of protein cross-linking sites and automated identification of low-resolution protein structures.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jasms.9b00111DOI Listing

Publication Analysis

Top Keywords

cross-linked peptides
16
cid etd
16
high confidence
12
confidence identification
12
identification cross-linked
12
cleavable cross-linking
12
cross-linking technology
12
mass spectrometry
12
photocleavable ducct
12
cross-linked
9

Similar Publications

Dual physiological responsive structural color hydrogel particles for wound repair.

Bioact Mater

April 2025

Joint Centre of Translational Medicine, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.

Hydrogel-based patches have demonstrated their values in diabetic wounds repair, particularly those intelligent dressings with continuous repair promoting and monitoring capabilities. Here, we propose a type of dual physiological responsive structural color particles for wound repair. The particles are composed of a hyaluronic acid methacryloyl (HAMA)-sodium alginate (Alg) inverse opal scaffold, filled with oxidized dextran (ODex)/quaternized chitosan (QCS) hydrogel.

View Article and Find Full Text PDF

The effectiveness of state-of-the-art cross-linking strategies and mass spectrometry (MS) detection was explored in an important biological context, namely, the ubiquitin-proteasome system, which is responsible for most of the regulated protein degradation in eukaryotic cells. The locations of possible binding sites on the 19S proteasome regulatory particle for Lys linked polyubiquitin chains were examined using cross-linking strategies and MS based detection by comparing two types of cross-linkers: a (bis)-sulfosuccinimidyl suberate (BS) and diethyl suberothioimidate (DEST). The well-established BS-based strategy produced 328 cross-linked peptides; however, no ubiquitin-19S cross-links were observed.

View Article and Find Full Text PDF

Dry socket, a common painful complication after tooth extraction, is typically caused by improper blood clot formation or its premature dislodgement, often exacerbated by bacterial infections. Traditional gelatin sponges, widely used as clinical fillers, provide favorable biocompatibility and hemostatic support but suffer from suboptimal hemostatic efficiency, lack of antimicrobial properties, and insufficient anticoagulant factors, which increase the risk of dry socket. Addressing these limitations, a novel tannic acid cross-linked gelatin sponge has been developed using directional lyophilization.

View Article and Find Full Text PDF

Background: Currently, the pathophysiology of new bone formation in radiographic axial spondyloarthritis (r-axSpA) remains unclear. Cellular elements and their secreted bone turnover markers might be one of the underlying mechanisms that drive the new bone formation. Our study aimed to investigate the role of bone turnover markers in r-axSpA patients with fatty lesions.

View Article and Find Full Text PDF

Keyhole limpet haemocyanins (KLH1 and KLH2) from , are multi-subunit oxygen-carrying metalloproteins of approximately 3900 amino acids, that are widely used as carrier proteins in conjugate vaccines and in immunotherapy. KLHs and their derived conjugate vaccines are poorly characterized by LC-MS/MS due to their very stable supramolecular structures with megadalton molecular mass, and their resistance to efficient digestion with standard protocols. KLH1 and KLH2 proteins were conjugated to the conserved P0 peptide (pP0), derived from the P0 acidic ribosomal protein of sp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!