A four-compartment multiscale model of fluid and drug distribution in vascular tumours.

Int J Numer Method Biomed Eng

School of Engineering Sciences, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK.

Published: March 2020

The subtle relationship between vascular network structure and mass transport is vital to predict and improve the efficacy of anticancer treatments. Here, mathematical homogenisation is used to derive a new multiscale continuum model of blood and chemotherapy transport in the vasculature and interstitium of a vascular tumour. This framework enables information at a range of vascular hierarchies to be fed into an effective description on the length scale of the tumour. The model behaviour is explored through a demonstrative case study of a simplified representation of a dorsal skinfold chamber, to examine the role of vascular network architecture in influencing fluid and drug perfusion on the length scale of the chamber. A single parameter, P, is identified that relates tumour-scale fluid perfusion to the permeability and density of the capillary bed. By fixing the topological and physiological properties of the arteriole and venule networks, an optimal value for P is identified, which maximises tumour fluid transport and is thus hypothesised to benefit chemotherapy delivery. We calculate the values for P for eight explicit network structures; in each case, vascular intervention by either decreasing the permeability or increasing the density of the capillary network would increase fluid perfusion through the cancerous tissue. Chemotherapeutic strategies are compared and indicate that single injection is consistently more successful compared with constant perfusion, and the model predicts optimal timing of a second dose. These results highlight the potential of computational modelling to elucidate the link between vascular architecture and fluid, drug distribution in tumours.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7187161PMC
http://dx.doi.org/10.1002/cnm.3315DOI Listing

Publication Analysis

Top Keywords

fluid drug
12
drug distribution
8
vascular network
8
length scale
8
fluid perfusion
8
density capillary
8
vascular
7
fluid
6
four-compartment multiscale
4
model
4

Similar Publications

Background: Nephrogenic diabetes insipidus is a rare, often underrecognized complication of long-term lithium therapy. Lithium-induced nephrogenic diabetes insipidus results from chronic renal exposure, leading to significant polyuria, dehydration, and hypernatremia.

Case Presentation: We describe a case of a 55-year-old White caucasian male with a schizoaffective disorder managed with lithium who presented with altered mental status and electrolyte abnormalities following a recent stroke.

View Article and Find Full Text PDF

Background: Anti-NMDA receptor encephalitis is an autoimmune, antibody-mediated inflammatory disease of the brain characterized by the presence of IgG antibodies targeting the excitatory N-methyl-D-aspartate receptor (NMDAR). Previous research has established that the neonatal Fc receptor (FcRn) regulates the transport and circulation of immunoglobulins (IgG). Efgartigimod, an FcRn antagonist, has been shown to enhance patient outcomes by promoting IgG clearance, and it has exhibited substantial clinical efficacy and tolerability in the treatment of myasthenia gravis.

View Article and Find Full Text PDF

Biomagnetic fluid dynamics (BFD) is an emerging and promising field within fluid mechanics, focusing on the dynamics of bio-fluids like blood in the presence of magnetic fields. This research is crucial in the medical arena for applications such as medication delivery, diagnostic and therapeutic procedures, prevention of excessive bleeding, and treatment of malignant tumors using magnetic particles. This study delves into the intricacies of blood flow induced by cilia, carrying trihybrid nanoparticles (gold, copper, and titania), within a catheterized arterial annulus under a robust magnetic field.

View Article and Find Full Text PDF

Cocaine and aortic dissection: the need for collaboration to overcome the underreporting bias.

Forensic Sci Med Pathol

January 2025

Department of Advanced Biomedical Sciences, School of Medicine, University of Naples Federico II, Via S. Pansini, 5, Naples, 80131, Italy.

The dissection of the aorta is a serious and potentially fatal consequence of cocaine use. Nonetheless, the underlying mechanisms and characteristics of this phenomenon remain to be deeply studied. The autopsy case of a 46-year-old white male found irresponsive and unconscious in his house and had a history of abusing cocaine is presented.

View Article and Find Full Text PDF

Wastewater is commonly contaminated with many pharmaceutical pollutants, so an efficient purification method is required for their removal from wastewater. In this regard, an innovative tertiary Se/SnO@CMC/Fe-GA nanocomposite was synthesized through encapsulation of metal organic frameworks (Fe-glutaric acid) onto Se/SnO-embedded-sodium carboxy methyl cellulose matrix to thoroughly evaluate its effectiveness for adsorption of levofloxacin drug from wastewater. The prepared Se/SnO@CMC/Fe-GA nanocomposite was analyzed via UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermo gravimetric analysis (TGA), energy dispersive X-ray (EDX), and X-ray diffraction (XRD) to valuate optical property, size, morphology, thermal stability, and chemical composition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!