A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fluorescence upconversion by triplet-triplet annihilation in all-organic poly(methacrylate)-terpolymers. | LitMetric

Fluorescence upconversion by triplet-triplet annihilation in all-organic poly(methacrylate)-terpolymers.

Phys Chem Chem Phys

Leibniz Institute of Photonic Technology Jena, Albert-Einstein-Straße 9, D-07745 Jena, Germany and Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, D-07743 Jena, Germany.

Published: February 2020

Fluorescence upconversion by triplet-triplet annihilation is demonstrated for a fully polymer-integrated material, i.e. in the limit of restricted diffusion. Organic sensitizer and acceptor are covalently attached to a poly(methacrylate) backbone, yielding a metal-free macromolecular all-in-one system for fluorescence upconversion. Due to the spatial confinement of the optically active molecular components, i.e. annihilator and sensitizer, UC by TTA in the constrained polymer system in solution is achieved at exceptionally low averaged annihilator concentrations. However, the UC quantum yield in the investigated systems is found to be low, highlighting that only chromophores in specific local surroundings yield upconversion in the limit of restricted diffusion. A photophysical model is proposed taking the heterogeneous local environment within the polymers into account.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0cp00232aDOI Listing

Publication Analysis

Top Keywords

fluorescence upconversion
12
upconversion triplet-triplet
8
triplet-triplet annihilation
8
limit restricted
8
restricted diffusion
8
annihilation all-organic
4
all-organic polymethacrylate-terpolymers
4
polymethacrylate-terpolymers fluorescence
4
annihilation demonstrated
4
demonstrated fully
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!