Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Fluorescence upconversion by triplet-triplet annihilation is demonstrated for a fully polymer-integrated material, i.e. in the limit of restricted diffusion. Organic sensitizer and acceptor are covalently attached to a poly(methacrylate) backbone, yielding a metal-free macromolecular all-in-one system for fluorescence upconversion. Due to the spatial confinement of the optically active molecular components, i.e. annihilator and sensitizer, UC by TTA in the constrained polymer system in solution is achieved at exceptionally low averaged annihilator concentrations. However, the UC quantum yield in the investigated systems is found to be low, highlighting that only chromophores in specific local surroundings yield upconversion in the limit of restricted diffusion. A photophysical model is proposed taking the heterogeneous local environment within the polymers into account.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0cp00232a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!