A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Separation Orthogonality in Liquid Chromatography-Mass Spectrometry for Proteomic Applications: Comparison of 16 Different Two-Dimensional Combinations. | LitMetric

Separation Orthogonality in Liquid Chromatography-Mass Spectrometry for Proteomic Applications: Comparison of 16 Different Two-Dimensional Combinations.

Anal Chem

Department of Biochemistry and Medical Genetics, University of Manitoba, 336 Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg, Manitoba R3E 0J9, Canada.

Published: March 2020

Peptide separation orthogonality for 16 different 2D LC-ESI MS systems has been evaluated. To compare and contrast the behavior of the first dimension columns, a large proteomic retention data set of ∼30 000 tryptic peptides was collected for each 2D pairing. The selection of the first dimension system was made to cover the most popular peptide separation modes applied in proteomics: reversed-phase (RP) separations with different pH, hydrophilic interaction liquid chromatography (HILIC), strong cation and anion exchange (SCX, SAX), and mixed-mode separations. The separation orthogonality generally increases in the order RP < SCX < HILIC < SAX, with the exception of high pH RP-low pH RP system, which showed the second best orthogonality value (68%), just behind PolySAX LP column (74%). The identification output of the 2D LC-MS/MS system is driven by both separation orthogonality and efficiency, making high pH RP the best choice for the first dimension separation. Its performance in combination with a standard C18 at acidic pH can be increased further through the application of pairwise fraction concatenation. The effect of the latter has been evaluated using fraction concatenation, which has been proven to show improvement only for RP separations in the first dimension. Concatenation of two, three, and four-five fractions into one is shown to be the most effective for high pH RP and HFBA- and TFA-based C18 separations, respectively. We also suggest simple guidelines for the unbiased determination of dissimilarity for two separation dimensions and evaluate separation orthogonality in 3D LC-LC-MS separation space for all systems under investigation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.9b05407DOI Listing

Publication Analysis

Top Keywords

separation orthogonality
20
separation
9
peptide separation
8
fraction concatenation
8
orthogonality
5
orthogonality liquid
4
liquid chromatography-mass
4
chromatography-mass spectrometry
4
spectrometry proteomic
4
proteomic applications
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!