Background: Subcutaneous grafting/implantation of neonatal testis tissue/cells from diverse donor species into recipient mice can be used as an in vivo model to study testis development, spermatogenesis, and steroidogenesis. Ultrasound biomicroscopy (UBM) allows obtaining high definition cross-sectional images of tissues at microscopic resolutions.
Objectives: The present study was designed to (a) validate the use of UBM for non-invasive monitoring of grafts/implants overtime and to (b) correlate UBM findings with the morphological attributes of recovered grafts/implants.
Materials And Methods: Testis tissue fragments (~14 mm , each) and cell aggregates (100 × 10 cells, each) obtained from 1-week-old donor piglets (n = 30) were grafted/implanted under the back skin of immunodeficient mice (n = 6) in eight analogous sites per mouse. Three-dimensional transcutaneous Doppler UBM was performed, and a randomly selected graft and its corresponding implant were recovered at 2, 4, 6, and 8 weeks.
Results: Graft/implant weight (P = .04) and physical height (P = .03) increased overtime. The dynamics of physical length and volume increases over time differed between tissue grafts and cell implants (P = .02 and 0.01 for sample type*time interactions, respectively). UBM-estimated volume was correlated with the post-recovery weight and volume of the grafts/implants (r = 0.98 and r = 0.99, respectively; P < .001). Pre- and post-recovery length and height of the grafts/implants were positively and strongly correlated (r = 0.50, P = .01; r = 0.70, P = .001) and so were the areas covered by cordal, non-cordal, or fluid-filled cavities between UBM and histology (r = 0.87, P < .001).
Discussion And Conclusion: UBM findings correlated with physical attributes of the grafts/implants, validating its use as a non-invasive high-fidelity tool to quantify the developmental changes in ectopic testis tissue grafts and cell implants, potentially leading to a reduction in the number of recipient mice needed for similar experiments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/andr.12771 | DOI Listing |
Transl Vis Sci Technol
December 2024
Department of Biomedical Engineering, University of Houston, Houston, TX, USA.
Purpose: To assess the safety of acoustic radiation force optical coherence elastography in the crystalline lens in situ.
Methods: Acoustic radiation force (ARF) produced by an immersion single-element ultrasound transducer (nominal frequency = 3.5 MHz) was characterized using a needle hydrophone and used for optical coherence elastography (OCE) of the crystalline lens.
Purpose: To evaluate dynamic changes in ciliary parameters and Implantable Collamer Lens V4C (ICL) (STAAR Surgical) haptic position using mydriatic and miotic agents and their effects on the central and peripheral vault.
Methods: This study involved 80 eyes from 40 consecutive patients (mean age: 28.05 years; range: 19 to 42 years) examined 3 months after ICL implantation.
J Transl Med
January 2025
Dental School, The University of Western Australia, 17 Monash Avenue, Nedlands, WA, 6009, Australia.
Background: Treatment of deep carious lesions poses significant challenges in dentistry, as complete lesion removal risks compromising pulp vitality, while selective removal often reduces the longevity of restorations. Herein, we propose a minimally invasive approach using High-Intensity Focused Ultrasound (HIFU) for microscale removal of carious dentine. Concurrently, HIFU's antimicrobial effects against associated cariogenic biofilms and the corresponding thermal and biological impacts on surrounding tissues were investigated.
View Article and Find Full Text PDFMicromachines (Basel)
November 2024
Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China.
Photoacoustic imaging has emerged as a promising modality for medical imaging since its introduction. Photoacoustic microscopy (PAM), which is based on the photoacoustic effect, combines the advantages of both optical and acoustic imaging modalities. PAM facilitates high-sensitivity, high-resolution, non-contact, and non-invasive imaging by employing optical absorption as its primary contrast mechanism.
View Article and Find Full Text PDFUltrasound localization microscopy (ULM) enables microvascular imaging at spatial resolutions beyond the acoustic diffraction limit, offering significant clinical potentials. However, ULM performance relies heavily on microbubble (MB) signal sparsity, the number of detected MBs, and signal-to-noise ratio (SNR), all of which vary in clinical scenarios involving bolus MB injections. These sources of variations underscore the need to optimize MB dosage, data acquisition timing, and imaging settings in order to standardize and optimize ULM of microvasculature.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!