Genetic screening for hypertrophic cardiomyopathy in large, asymptomatic military cohorts.

Am J Med Genet C Semin Med Genet

Science and Mathematics Department, U.S. Naval Academy, Annapolis, Maryland.

Published: March 2020

Sudden cardiac death (SCD) is one of the leading causes of mortality in the U.S. military and competitive athletes. In this study, we simulate how genetic screening may be implemented in the military to prevent an SCD endpoint resulting from hypertrophic cardiomyopathy (HCM). We created a logistic regression model to predict variant pathogenicity in the most common HCM associated genes MYH7 and MYBPC3. Model predictions were used in conjunction with the gnomAD database to identify frequencies of pathogenic variants. Extrapolating these variants to a military population, lives saved and cost benefit analyses were conducted for screening for HCM related to pathogenic variants in MYH7 and MYBPC3. Genetic screening for HCM followed by echocardiography in individuals with pathogenic variants is predicted to save an average of 2.9 lives per accession cohort, based on historical cohort sizes, and result in a break-even cost of ~$7 per test. The false positives, defined as disqualified individuals for military service who do not have HCM, are predicted to be 0 individuals per accession cohort. This study suggests that the main barriers for the implementation of genetic screening for the U.S. military are the low detection rate and variant interpretation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.c.31772DOI Listing

Publication Analysis

Top Keywords

genetic screening
16
pathogenic variants
12
hypertrophic cardiomyopathy
8
myh7 mybpc3
8
screening hcm
8
accession cohort
8
military
6
hcm
5
genetic
4
screening hypertrophic
4

Similar Publications

High intraocular pressure (IOP) is an important risk factor for glaucoma, which is influenced by genetic and environmental factors. However, the etiology of high IOP remains uncertain. Metabolites are compounds involved in metabolism which provide a link between the internal (genetic) and external environments.

View Article and Find Full Text PDF

The hypothalamic neuropeptide system of orexin (hypocretin) neurons provides projections throughout the neuraxis and has been linked to sleep regulation, feeding and motivation for salient rewards including drugs of abuse. However, relatively little has been done to examine genes associated with orexin signaling and specific behavioral phenotypes in humans. Here, we tested for association of twenty-seven genes involved in orexin signaling with behavioral phenotypes in humans.

View Article and Find Full Text PDF

Disorders of Muscle Mass and Tone.

Vet Clin North Am Equine Pract

January 2025

SVM: Department of Medicine and Epidemiology, University of California, Davis, Tupper Hall 2108, One Shields Avenue, Davis, CA 95616, USA. Electronic address:

Muscle disease has various clinical manifestations that range from exertional and non-exertional rhabdomyolysis, fasciculations, weakness, rigidity, stiffness, gait abnormalities, poor performance, and alterations in muscle mass and tone. Neurogenic disorders and non-neurogenic disorders such as primary muscle disease can cause muscle atrophy and changes in muscle tone. Myotonic disorders can have a genetic (eg, inherited channelopathies) or acquired (eg, electrolyte derangements) origin.

View Article and Find Full Text PDF

Genetics of Muscle Disease.

Vet Clin North Am Equine Pract

January 2025

Department of Veterinary Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, Room 4206 Vet Med 3A One Shields Avenue, Davis, CA 95616, USA. Electronic address:

In the field of equine muscle disorders, many conditions have a genetic basis. Therefore, genetic testing is an important part of the diagnostic evaluation. Validated genetic tests are currently available for 5 equine muscle disorders: hyperkalemic periodic paralysis, malignant hyperthermia, glycogen branching enzyme disease, type 1 polysaccharide storage myopathy, and myosin heavy chain myopathy.

View Article and Find Full Text PDF

Nonsense-mediated decay (NMD) is a eukaryotic surveillance pathway that controls degradation of cytoplasmic transcripts with aberrant features. NMD-controlled RNA degradation acts to regulate a large fraction of the mRNA population. It has been implicated in cellular responses to infections and environmental stress, as well as in deregulation of tumor-promoting genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!