AI Article Synopsis

Article Abstract

Temporomandibular joint osteoarthritis (TMJ OA) leads to permanent cartilage destruction, jaw dysfunction, and compromises the quality of life. However, the pathological mechanisms governing TMJ OA are poorly understood. Unlike appendicular articular cartilage, the TMJ has two distinct functions as the synovial joint of the craniofacial complex and also as the site for endochondral jaw bone growth. The established dogma of endochondral bone ossification is that hypertrophic chondrocytes undergo apoptosis, while invading vasculature with osteoprogenitors replace cartilage with bone. However, contemporary murine genetic studies support the direct differentiation of chondrocytes into osteoblasts and osteocytes in the TMJ. Here we sought to characterize putative vasculature and cartilage to bone transdifferentiation using healthy and diseased TMJ tissues from miniature pigs and humans. During endochondral ossification, the presence of fully formed vasculature expressing CD31 endothelial cells and α-SMA vascular smooth muscle cells were detected within all cellular zones in growing miniature pigs. Arterial, endothelial, venous, angiogenic, and mural cell markers were significantly upregulated in miniature pig TMJ tissues relative to donor matched knee meniscus fibrocartilage tissue. Upon surgically creating TMJ OA in miniature pigs, we discovered increased vasculature and putative chondrocyte to osteoblast transformation dually marked by COL2 and BSP or RUNX2 within the vascular bundles. Pathological human TMJ tissues also exhibited increased vasculature, while isolated diseased human TMJ cells exhibited marked increased in vasculature markers relative to control 293T cells. Our study provides evidence to suggest that the TMJ in higher order species are in fact vascularized. There have been no reports of cartilage to bone transdifferentiation or vasculature in human-relevant TMJ OA large animal models or in human TMJ tissues and cells. Therefore, these findings may potentially alter the clinical management of TMJ OA by defining new drugs that target angiogenesis or block the cartilage to bone transformation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7380713PMC
http://dx.doi.org/10.1096/fj.201902287RDOI Listing

Publication Analysis

Top Keywords

cartilage bone
16
tmj tissues
16
tmj
13
miniature pigs
12
increased vasculature
12
human tmj
12
chondrocyte osteoblast
8
bone transdifferentiation
8
vasculature
7
cartilage
6

Similar Publications

Variants in the SOX9 transactivation middle domain induce axial skeleton dysplasia and scoliosis.

Proc Natl Acad Sci U S A

January 2025

Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.

SOX9 is a crucial transcriptional regulator of cartilage development and homeostasis. Dysregulation of is associated with a wide spectrum of skeletal disorders, including campomelic dysplasia, acampomelic campomelic dysplasia, and scoliosis. Yet how variants contribute to the spectrum of axial skeletal disorders is not well understood.

View Article and Find Full Text PDF

A tough soft-hard interface in the human knee joint driven by multiscale toughening mechanisms.

Proc Natl Acad Sci U S A

January 2025

Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311113, China.

Joining heterogeneous materials in engineered structures remains a significant challenge due to stress concentration at interfaces, which often leads to unexpected failures. Investigating the complex, multiscale-graded structures found in animal tissue provides valuable insights that can help address this challenge. The human meniscus root-bone interface is an exemplary model, renowned for its exceptional fatigue resistance, toughness, and interfacial adhesion properties throughout its lifespan.

View Article and Find Full Text PDF

In this study, we explored the impact of different biomechanical loadings on lumbar spine motion segments, particularly concerning intervertebral disc degeneration (IVDD). We aimed to uncover the cellular milieu and mechanisms driving ossification in the nucleus pulposus (NP) during IVDD, a process whose underlying mechanisms have remained elusive. The study involved the examination of fresh NP tissue from the L3-S1 segment of five individuals, either with IVDD or healthy.

View Article and Find Full Text PDF

A review of ectochondral bone and the role of membranes in shaping endochondral bones of the skull.

Anat Rec (Hoboken)

January 2025

Department of Health and Rehabilitation Sciences, Slippery Rock University, Slippery Rock, Pennsylvania, USA.

Bones of the skull are traditionally categorized as derived from either endochondral or intramembranous bone. In our previous work, we have observed the interaction of different tissue types in growth of the skull. We find the dichotomy of intramembranous and endochondral bone to be too restrictive, limiting our interpretation of sources of biological variation.

View Article and Find Full Text PDF

Maximizing Septal Cartilage and Bone Harvest for Autologous Nasal Septal Grafts in Congenital Cleft Nasal Deformity.

Facial Plast Surg Aesthet Med

January 2025

Division of Otolaryngology-Head & Neck Surgery, Department of Surgery, Health Sciences Center, University of New Mexico, Albuquerque, New Mexico, USA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!