The tumour microenvironment (TME) surrounding tumour cells is a highly dynamic and heterogeneous composition of immune cells, fibroblasts, precursor cells, endothelial cells, signalling molecules and extracellular matrix (ECM) components. Due to the heterogeneity and the constant crosstalk between the TME and the tumour cells, the components of the TME are important prognostic parameters in cancer and determine the response to novel immunotherapies. To improve the characterization of the TME, novel non-invasive imaging paradigms targeting the complexity of the TME are urgently needed.The characterization of the TME by molecular imaging will (1) support early diagnosis and disease follow-up, (2) guide (stereotactic) biopsy sampling, (3) highlight the dynamic changes during disease pathogenesis in a non-invasive manner, (4) help monitor existing therapies, (5) support the development of novel TME-targeting therapies and (6) aid stratification of patients, according to the cellular composition of their tumours in correlation to their therapy response.This chapter will summarize the most recent developments and applications of molecular imaging paradigms beyond FDG for the characterization of the dynamic molecular and cellular changes in the TME.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-030-35727-6_5DOI Listing

Publication Analysis

Top Keywords

molecular imaging
12
tumour microenvironment
8
tumour cells
8
characterization tme
8
imaging paradigms
8
tme
7
cells
5
multimodal molecular
4
imaging
4
tumour
4

Similar Publications

The blood-brain-barrier prevents many imaging agents and therapeutics from being delivered to the brain that could fight central nervous system diseases such as Alzheimer's disease and strokes. However, techniques such as the use of stapled peptides or peptide shuttles may allow payloads through, with bioconjugation achieved bio-orthogonal tetrazine/norbornene click chemistry. A series of lanthanide-tetrazine probes have been synthesised herein which could be utilised in bio-orthogonal click chemistry with peptide-based delivery systems to deliver MRI agents through the blood-brain-barrier.

View Article and Find Full Text PDF

Introduction: HIV-1 exploits dendritic cells (DCs) to spread throughout the body via specific recognition of gangliosides present on the viral envelope by the CD169/Siglec-1 membrane receptor. This interaction triggers the internalization of HIV-1 within a structure known as the sac-like compartment. While the mechanism underlying sac-like compartment formation remains elusive, prior research indicates that the process is clathrin-independent and cell membrane cholesterol-dependent and involves transient disruption of cortical actin.

View Article and Find Full Text PDF

Background: Infiltrative hepatocellular carcinoma (HCC) remains a therapeutic challenge due to its aggressive course and poor prognosis. Hepatic arterial infusion chemotherapy (HAIC) plus immune checkpoint inhibitors (ICIs) and molecular targeted therapies (MTTs) has shown early promise for advanced HCC, but its role in advanced infiltrative HCC is unclear. This study aims to investigate the efficacy and safety of HAIC combined with ICIs and MTTs in the treatment of advanced infiltrative HCC.

View Article and Find Full Text PDF

The quality of CT images obtained from hepatocellular carcinoma (HCC) patients is complex, affecting diagnostic accuracy, precision, and radiation dose assessment due to increased exposure risks. The study evaluated image quality qualitatively and quantitatively by comparing quality levels with an effective radiation dose to ensure acceptable quality accuracy. This study retrospectively reviewed 100 known HCC patients (Li-RADS-5) who underwent multidetector computed tomography (MDCT) multiphasic scans for follow-up of their health condition between January and October 2023.

View Article and Find Full Text PDF

Plasma protein levels provide important insights into human disease, yet a comprehensive assessment of plasma proteomics across organs is lacking. Using large-scale multimodal data from the UK Biobank, we integrated plasma proteomics with organ imaging to map their phenotypic and genetic links, analyzing 2,923 proteins and 1,051 imaging traits across multiple organs. We uncovered 5,067 phenotypic protein-imaging associations, identifying both organ-specific and organ-shared proteomic relations, along with their enriched protein-protein interaction networks and biological pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!