Screening for CRISPR/Cas9-induced mutations using a co-injection marker in the nematode Pristionchus pacificus.

Dev Genes Evol

Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.

Published: May 2020

CRISPR/Cas9 genome-editing methods are used to reveal functions of genes and molecular mechanisms underlying biological processes in many species, including nematodes. In evolutionary biology, the nematode Pristionchus pacificus is a satellite model and has been used to understand interesting phenomena such as phenotypic plasticity and self-recognition. In P. pacificus, CRISPR/Cas9-mediated mutations are induced by microinjecting a guide RNA (gRNA) and Cas9 protein into the gonads. However, mutant screening is laborious and time-consuming due to the absence of visual markers. In this study, we established a Co-CRISPR strategy by using a dominant roller marker in P. pacificus. We found that heterozygous mutations in Ppa-prl-1 induced the roller phenotype, which can be used as an injection marker. After the co-injection of Ppa-prl-1 gRNA, target gRNA, and the Cas9 protein, roller progeny and their siblings were examined using the heteroduplex mobility assay and DNA sequencing. We found that some of the roller and non-roller siblings had mutations at the target site. We used varying Cas9 concentrations and found that a higher concentration of Cas9 did not increase genome-editing events. The Co-CRISPR strategy promotes the screening for genome-editing events and will facilitate the development of new genome-editing methods in P. pacificus.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00427-020-00651-yDOI Listing

Publication Analysis

Top Keywords

nematode pristionchus
8
pristionchus pacificus
8
genome-editing methods
8
grna cas9
8
cas9 protein
8
co-crispr strategy
8
genome-editing events
8
pacificus
5
screening crispr/cas9-induced
4
mutations
4

Similar Publications

An evolutionary perspective on the relationship between kinetochore size and CENP-E dependence for chromosome alignment.

J Cell Sci

December 2024

i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 400-135 Porto, Portugal.

Chromosome alignment during mitosis can occur as a consequence of bi-orientation or is assisted by the CENP-E (kinesin-7) motor at kinetochores. We previously found that Indian muntjac chromosomes with larger kinetochores bi-orient more efficiently and are biased to align in a CENP-E-independent manner, suggesting that CENP-E dependence for chromosome alignment negatively correlates with kinetochore size. Here, we used targeted phylogenetic profiling of CENP-E in monocentric (localized centromeres) and holocentric (centromeres spanning the entire chromosome length) clades to test this hypothesis at an evolutionary scale.

View Article and Find Full Text PDF

Pristionchus - Beetle associations: Towards a new natural history.

J Invertebr Pathol

December 2024

Max Planck Institute for Biology Tübingen, Tübingen, Germany; Max Planck Ring 9, 72076 Tübingen, Germany. Electronic address:

The free-living nematode Pristionchus pacificus has been established as a model system in integrative evolutionary biology by combining laboratory studies with field work and evolutionary biology. Multiple genetic, molecular and experimental tools and a collection of more than 2,500 P. pacificus strains and more than 50 Pristionchus species, which are available as living cultures or frozen stock collections, support research on various life history traits.

View Article and Find Full Text PDF

Polyphenisms, the capability of organisms to form two or more alternative phenotypes in response to environmental variation, are prevalent in nature. However, associated molecular mechanisms and potential general principles of polyphenisms among major organismal groups remain currently unknown. This review focuses on an emerging model system for developmental plasticity and polyphenism research, the nematode and explores mechanistic insight obtained through unbiased genetic, experimental and natural variation studies.

View Article and Find Full Text PDF

Light sensing is a critical function in most organisms and is mediated by photoreceptor proteins and phototransduction. Although most nematodes lack eyes, some species exhibit phototaxis. In the nematode Caenorhabditis elegans, the unique photoreceptor protein Cel-LITE-1, its downstream G proteins, and cyclic GMP (cGMP)-dependent pathways are required for phototransduction.

View Article and Find Full Text PDF

The factors contributing to evolution of androdioecy, the coexistence of hermaphrodites and males such as in Caenorhabditis elegans, remains poorly known. However, nematodes exhibit androdioecy in at last 13 genera with the predatory genus Pristionchus having seven independent transitions towards androdioecy. Nonetheless, associated genomic architecture and sex determination mechanisms are largely known from Caenorhabditis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!