The nucleophilic γ-phenylation and γ-alkylation of α,β-unsaturated amides have been developed. This umpolung reaction allows the regioselective introduction of phenyl and alkyl groups to a vinylketene N,O-acetal, which is generated in situ from an α,β-unsaturated N-alkoxyamide, followed by N-O bond cleavage in a two-step, one-pot process.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0ob00125bDOI Listing

Publication Analysis

Top Keywords

αβ-unsaturated amides
8
γ-c sp-h
4
sp-h bond
4
bond functionalisation
4
functionalisation αβ-unsaturated
4
amides umpolung
4
umpolung strategy
4
strategy nucleophilic
4
nucleophilic γ-phenylation
4
γ-phenylation γ-alkylation
4

Similar Publications

Background: Synthesis of organic@inorganic hNFs is achieved by the coordination of organic compounds containing amine, amide, and diol groups with bivalent metals. The use of bio-extracts containing these functional groups instead of expensive organic inputs such as DNA, enzymes, and protein creates advantages in terms of cost and applicability. In this study, the application potentials (antioxidant, antibacterial, anticancer, guaiacol, anionic, and cationic dye degradation) of hybrid (organic@inorganic) nanoflowers (hNFs) synthesized with Cu and snakeskin (SSS) were proposed.

View Article and Find Full Text PDF

A new method was developed to quickly produce carboxymethyl hemicellulose (CM-Hemi) and fluorescent nitrogen-doped carbon dots (N-CDs) from sugarcane bagasse (SB). These materials were then combined with calcium chloride (CaCl₂) to create hydrogel sensors with antibacterial and antifungal properties. The CM-Hemi@Ca-N-CDs hydrogel was effective against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria compared to CM-Hemi@Ca which give no antibacterial activity.

View Article and Find Full Text PDF

The process of developing new drugs is arduous and costly, particularly for targets classified as "difficult-to-drug." Macrocycles show a particular ability to modulate difficult-to-drug targets, including protein-protein interactions, while still allowing oral administration. However, the determination of membrane permeability, critical for reaching intracellular targets and for oral bioavailability, is laborious and expensive.

View Article and Find Full Text PDF

Carbocation charge as an interpretable descriptor for the catalytic activity of hydrolytic nanozymes.

J Colloid Interface Sci

December 2024

College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China. Electronic address:

A universal theory for predicting the catalytic activity of hydrolytic nanozymes has yet to be developed. Herein, by investigating the polarization and hydrolysis mechanisms of nanomaterials towards amide bonds, carbocation charge was identified as a key electronic descriptor for predicting catalytic activity in amide hydrolysis. Through machine learning correlation analysis and the Sure Independence Screening and Sparsifying Operator (SISSO) algorithm, this descriptor was interpreted to associate with the d-band center and Lewis acidity on the nanomaterial surface.

View Article and Find Full Text PDF

Background: Severe acute malnutrition (SAM) is a severe condition causing bilateral pitting edema or signs of wasting in children, with a high mortality risk. An outpatient therapeutic program is recommended for managing SAM children without complications, but there is limited information on recovery time and its determinants.

Objective: This study aims to assess the time to recovery and its predictors among children aged 6-59 months with SAM admitted to the Outpatient therapeutic program in the Borena zone, Oromia region, Southern Ethiopia in 2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!