Drug-induced liver injury (DILI) is a life-threatening, adverse reaction to certain drugs. The onset and extent of DILI can vary drastically in different patients using identical drugs. Association studies suggested that subtle differences in DNA methylation may help explain the individual differences in DILI. However, there are very few experimental methods to confirm such associations. In this study, we established a novel DNA methylation functional detection system in human hepatocytes, using CRISPR/dCas9 for targeted modification of DNA methylation, and set four parameters to indicate the liver injury by cell model. Using this system, we validated the association of hypermethylation of CYP2D6 and CYP2E1 with rifampin-induced DILI. Our results revealed that, following treatment of HepaRG cells with rifampin, the methylation levels of CYP2D6 and CYP2E1 were inversely proportional to cell viability and glutathione content, and directly proportional to caspase 3/7 activity. We expect that our methylation detection system will serve as a useful tool in validating correlations between DNA methylation and DILI in other in vitro systems. Our results establish a foundation for future investigations to better understand the mechanisms underlying DILI and may aid in advancing personalized DILI medicine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41397-020-0160-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!