VO is well known for its first order, reversible, metal-to-insulator transition (MIT) along with a simultaneous structural phase transition (SPT) from a high-temperature metallic rutile tetragonal (R) to an insulating low-temperature monoclinic (M1) phase via two other insulating metastable phases of monoclinic M2 and triclinic T. At the same time, VO gains tremendous attention because of the half-a-century-old controversy over its origin, whether electron-electron correlation or electron-phonon coupling trigger the phase transition. In this regard, VMgO samples were grown in stable phases of VO (M1, M2, and T) by controlled doping of Mg. We have observed a new collective mode in the low-frequency Raman spectra of all three insulating M1, M2 and T phases. We identify this mode with the breather (singlet spin excitation) mode about a spin-Pierls dimerized one dimensional spin ½ Heisenberg chain. The measured frequencies of these collective modes are phenomenologically consistent with the superexchange coupling strength between V spin ½ moments in all three phases. The significant deviation of Stokes to anti-Stokes intensity ratio of this low-frequency Raman mode from the usual thermal factor exp(hʋ/KT) for phonons, and the orthogonal dependency of the phonon and spinon vibration in the polarized Raman study confirm its origin as spin excitations. The shift in the frequency of spin-wave and simultaneous increase in the transition temperature in the absence of any structural change confirms that SPT does not prompt MIT in VO. On the other hand, the presence of spin-wave confirms the perturbation due to spin-Peierls dimerization leading to SPT. Thus, the observation of spin-excitations resulting from 1-D Heisenberg spin-½ chain can finally resolve the years-long debate in VO and can be extended to oxide-based multiferroics, which are useful for various potential device applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7005027 | PMC |
http://dx.doi.org/10.1038/s41598-020-58813-x | DOI Listing |
Inorg Chem
January 2025
Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, China.
Copper-based halides have attracted significant attention due to their unique photophysical properties and diverse coordination configurations. However, enhancing water stability and modulating structural transitions in cuprous halide materials remain challenging. In this work, we successfully synthesized three copper(I) halides, (CHP)CuBr (L1, [CHP] = hexyltriphenylphosphonium), (CHP)CuBr (L2), and (CHP)CuI (L3), via solvent volatilization, demonstrating exceptional water stability even after 27 days of submersion.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge CB2 1EW, United Kingdom.
The onset and development of Alzheimer's disease is linked to the accumulation of pathological aggregates formed from the normally monomeric amyloid-β peptide within the central nervous system. These Aβ aggregates are increasingly successfully targeted with clinical therapies at later stages of the disease, but the fundamental molecular steps in early stage disease that trigger the initial nucleation event leading to the conversion of monomeric Aβ peptide into pathological aggregates remain unknown. Here, we show that the Aβ peptide can form biomolecular condensates on lipid bilayers both in molecular assays and in living cells.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311113, China.
Joining heterogeneous materials in engineered structures remains a significant challenge due to stress concentration at interfaces, which often leads to unexpected failures. Investigating the complex, multiscale-graded structures found in animal tissue provides valuable insights that can help address this challenge. The human meniscus root-bone interface is an exemplary model, renowned for its exceptional fatigue resistance, toughness, and interfacial adhesion properties throughout its lifespan.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Center for High-Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, School of Science, Yanshan University, Qinhuangdao, 066004, China.
Oxygen usually exists in the form of diatomic molecules at ambient conditions. At high pressure, it undergoes a series of phase transitions from diatomic O to O cluster and ultimately dissociates into a polymeric O spiral chain structure. Intriguingly, the commonly found cyclic hexameric molecules in other group VIA elements (e.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Institute for Superconducting & Electronic Materials (ISEM), Faculty of Engineering and Information Sciences (EIS), University of Wollongong, Wollongong, NSW, 2500, Australia.
Rechargeable batteries are central to modern energy storage systems, from portable electronics to electric vehicles. The cathode material, a critical component, largely dictates a battery's energy density, capacity, and overall performance. This review focuses on the application of operando X-ray absorption spectroscopy (XAS) to study cathode materials in Li-ion, Na-ion, Li-S, and Na-S batteries.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!