[Diammonium glycyrrhizinate promotes the regeneration and repair of central nervous system in rats with severe traumatic brain injury by Wnt/β-catenin signaling pathway].

Zhonghua Wei Zhong Bing Ji Jiu Yi Xue

Department of Integrated Traditional Chinese and Western Medicine, Guangxi International Zhuang Medical Hospital, Nanning 530201, Guangxi Zhuang Autonomous Region, China. Corresponding author: Pan Yuzheng, Email:

Published: December 2019

Objective: To observe the effects of diammonium glycyrrhizinate (DG) on nerve regeneration repair in rats with severe traumatic brain injury (STBI) from the perspective of Wnt/β-catenin signaling pathway.

Methods: Seventy-two Sprague-Dawle (SD) male rats were randomly divided into normal group, STBI model group, ganglioside (GA) treatment group and DG treatment group. The STBI animal model was reproduced referring to modified Feeney free fall impact model. No injury was made in normal group. Six hours after modeling, monosialotetrahexosylganglioside sodium injection and DG injection were injected via tail vein of rats in GA treatment group and DG treatment group respectively, once a day for 7 days. Normal group and STBI model group were given the same amount of normal saline. Six rats in each group were sacrificed on the 1st, 3rd and 7th day after the challenge for neurological severity score (NSS), and then the blood of abdominal aorta was drawn and brain tissue was harvested. The contents of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in serum were detected by enzyme linked immunosorbent assay (ELISA). The pathological changes of sub-granular zone (SGZ) were observed under light microscope after hematoxylin eosin (HE) staining. Real-time quantitative reverse transcription-polymerase chain reaction (RT-qPCR) was used to detect the mRNA expressions of Wnt3a, β-catenin, glycogen synthetase kinase-3β (GSK-3β) and Axin.

Results: (1) There was no neurological deficit in the normal group and NSS was 0. NSS score of rats increased significantly on the first day after modeling, and then decreased gradually over time. NSS of the rats treated with GA and DG were significantly lower than that of the STBI model rats (score: 7.33±2.07, 6.17±2.23 vs. 9.33±1.63, both P < 0.01). Though NSS gradually decreased over time, the differences were still statistically significant on the 7th day (score: 2.67±0.82, 1.00±0.00 vs. 6.17±2.23, both P < 0.01), and NSS of DG treatment group was significantly lower than that of GA treatment group. (2) In SGZ of rats, cells were arranged in a compact and orderly way in the normal group, but neurons and tissues were damaged and destroyed at different time points in the STBI model group. After either GA or DG treatment, the damage of nerve tissue was improved gradually over time, and the effect of DG was more obvious. (3) In the normal group, the mRNA expressions of Wnt3a and β-catenin were almost not expressed, the mRNA expressions of GSK-3β and Axin were higher, and the contents of BDNF and NGF in serum were less. On the 1st day after STBI, the mRNA expressions of Wnt3a and β-catenin in hippocampus, the contents of BDNF and NGF in serum were significantly increased, and the mRNA expressions of GSK-3β and Axin were significantly decreased. The mRNA expressions of Wnt3a and β-catenin in the hippocampus and the contents of BDNF and NGF in serum were significantly higher than those in the model group 1 day after GA or DG was added, the mRNA expressions of GSK-3β and Axin were significantly decreased, and the effect of DG was more significant than that of GA [Wnt3a mRNA (2): 3.51±0.14 vs. 2.93±0.05, β-catenin mRNA (2): 1.90±0.08 vs. 1.75±0.04, BDNF (ng/L): 4.06±0.55 vs. 3.16±0.64, NGF (ng/L): 9.53±1.08 vs. 7.26±0.43, GSK-3β mRNA (2): 0.75±0.01 vs. 0.79±0.01, Axin mRNA (2): 0.74±0.02 vs. 0.76±0.02, all P < 0.05]. It was gradually increasing or decreasing over time and the difference was still statistically significant up to the 7th day.

Conclusions: DG can promote the recovery of nerve function in rats with STBI, and its mechanism may be related to the regeneration of nerve cells proliferation and differentiation by Wnt/β-catenin signaling pathway and the reconstruction of nerve tissue in SGZ of hippocampus.

Download full-text PDF

Source
http://dx.doi.org/10.3760/cma.j.issn.2095-4352.2019.12.004DOI Listing

Publication Analysis

Top Keywords

mrna expressions
28
normal group
24
treatment group
24
group
17
stbi model
16
model group
16
ngf serum
16
expressions wnt3a
16
wnt3a β-catenin
16
wnt/β-catenin signaling
12

Similar Publications

Purpose: Our aim was to examine the expression of PAX6 and keratocyte-specific markers in human limbal stromal cells (LSCs) in congenital aniridia (AN) and in healthy corneas, .

Methods: Primary human LSCs were extracted from individuals with aniridia (AN-LSCs) ( = 8) and from healthy corneas (LSCs) ( = 8). The cells were cultured in either normal-glucose serum-containing cell culture medium (NGSC-medium) or low-glucose serum-free cell culture medium (LGSF-medium).

View Article and Find Full Text PDF

Intrauterine growth restriction (IUGR) is the second most common obstetric complication after preterm labor. Appropriate trophoblast differentiation and placental structure, growth and function are key for the maintenance of pregnancy and normal fetal growth, development and survival. Extravillous trophoblast cell proliferation, migration and invasion are regulated by molecules produced by the fetomaternal interface, including autocrine factors produced by the trophoblast, such as insulin‑like growth factor (IGF)‑1.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD), the leading cause of dementia, is characterized by cognitive decline and the accumulation of amyloid-β (Aβ). It affects millions, with numbers expected to double by 2050. SMOC2, implicated in inflammation and fibrosis, may play a role in AD pathogenesis, particularly in microglial cell function, offering a potential therapeutic target.

View Article and Find Full Text PDF

Edaravone Improves Motor Dysfunction Following Brachial Plexus Avulsion Injury in Rats.

ACS Chem Neurosci

January 2025

Department of Neurology, Multi-Omics Research Center for Brain Disorders,The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.

Brachial plexus root avulsion (BPRA) is often caused by road collisions, leading to total loss of motor function in the upper limb. At present, effective treatment options remain limited. Edaravone (EDA), a substance that eliminates free radicals, exhibits numerous biological properties, including neuroprotective, antioxidant and anti-inflammatory effects.

View Article and Find Full Text PDF

Effect of Oral Posaconazole on Venetoclax Plasma Concentration and its Efficacy in Patients with Acute Myeloid Leukemia.

Recent Pat Anticancer Drug Discov

January 2025

Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, P.R. China.

Background: BCL-2 was the first gene identified to have antiapoptotic effects, and venetoclax is an oral selective BCL-2 inhibitor, which has great potential in the treatment of patients with acute myeloid leukemia (AML) who are not candidates for intensive therapy. Notably, posaconazole, an oral antifungal drug, is also a strong factor that can affect blood venetoclax concentrations. To the best of our knowledge, the relationship between BCL-2 expression, posaconazole, and venetoclax, as well as their influence on treatment efficacy and the prognosis of patients with AML, has not been reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!