The aim of this study was to develop a new chitosan derivative and investigate its effects on fresh tissue healing in rats. A chitosan-fructose Schiff based quaternary ammonium salt (CS = Fru-DEAE) was synthesized for the first time and characterized using FT-IR and HNMR, and the modification rate and the solution properties were studied. A rat wound model was established, and the experimental group was treated using 0.1 g of the chitosan derivative hydrogel. The wound healing rate, and the concentration of collagen III and proline in the wounds were assessed in the experimental group and compared with those of the control group at 7, 10, and 15 d. The CS = Fru-DEAE hydrogel demonstrated good performance and promoted the healing of infected wounds in rats. The hydrogel could accelerate the infiltration of inflammatory cells and increase the amount of type III collagen in the wound area, which likely contributed to its efficacy.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09205063.2020.1719684DOI Listing

Publication Analysis

Top Keywords

quaternary ammonium
8
ammonium salt
8
chitosan derivative
8
experimental group
8
preparation characterization
4
characterization schiff-based
4
schiff-based chitosan-fructose
4
chitosan-fructose quaternary
4
salt medical
4
medical applications
4

Similar Publications

Assessing parental aesthetic acceptability of Silver Diamine Fluoride (SDF) staining is crucial for its potential implementation in paediatric dentistry in different regions. This study aimed to compare aesthetic perceptions and acceptance of SDF staining between Spanish and Italian parents, and assess weather acceptability is influenced by location, child's cooperation, or demographic background. A cross-sectional comparative study was conducted among Spanish and Italian parents at three university dental clinics, using a validated Italian version of the questionnaire "Parental perceptions of Silver Diamine Fluoride Dental Color Changes".

View Article and Find Full Text PDF

Cinnamaldehyde (CIN) is gaining interest as a highly effective natural antimicrobial agent to extend the shelf life of fruits. However, its inherent instability limits further applications. In this work, a new strategy for the synthesis of HKUST-1 to encapsulate CINs by in situ growth method using copper-ammonia fiber as precursors is proposed.

View Article and Find Full Text PDF

Iron-based driven chitosan quaternary ammonium salt self-gelling powder: Sealing uncontrollable bleeding and promoting wound healing.

Int J Biol Macromol

January 2025

Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China. Electronic address:

Uncontrollable bleeding poses a significant risk of death and cost in wars, vehicle accidents, and first aid. Hence, in order to seal uncontrollable bleeding and promote wound healing, the Fe-driven chitosan quaternary ammonium salt self-gelling powder (QPF) was prepared using 5%QCS/AA/Fe with the 52.72 % ± 0.

View Article and Find Full Text PDF

An introduction to antibacterial materials in composite restorations.

JADA Found Sci

October 2024

Division of Biomaterial and Biomedical Sciences, Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health & Science University, Portland, OR.

The longevity of direct esthetic restorations is severely compromised because of, among other things, a loss of function that comes from their susceptibility to biofilm-mediated secondary caries, with being the most prevalent associated pathogen. Strategies to combat biofilms range from dental compounds that can disrupt multispecies biofilms in the oral cavity to approaches that specifically target caries-causing bacteria such as . One strategy is to include those antibacterial compounds directly in the material so they can be available long-term in the oral cavity and localized at the margin of the restorations, in which many of the failures initiate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!