Influence of β-Carotene and Lycopene on Oxidation of Ethyl Linoleate in One- and Disperse-Phased Model Systems.

J Agric Food Chem

Institute of Chemistry-Food Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Straße 2, D-06120 Halle/Saale, Germany.

Published: March 2020

The induction period (IP) of ethyl linoleate stressed at 60 °C was monitored via the formation of hydroperoxides. The addition of lycopene (1% w/w) increased the IP from 7.0 to 10.0 h to prove the strong antioxidative potential in contrast to β-carotene with pro-oxidative effects (IP: 6.0 h), both showing strong scavenging activity under fast degradation. When peroxidation was induced by singlet oxygen, both carotenoids effectively inhibited the formation of hydroperoxides, with quenching activity only observed at low singlet oxygen concentrations, while scavenging still dominated. Thus, carotenoids did not interact with the introduced singlet oxygen but rather with the radical intermediates of fat oxidation. These experiments were then transferred to lecithin-based micelles more related to biological systems, where singlet oxygen was generated in the outer aqueous phase. Lycopene and β-carotene delayed or inhibited lipid peroxidation depending on concentration. In this setup, β-carotene showed exclusively quenching activity, while lycopene was additionally degraded to about 70%.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.9b07862DOI Listing

Publication Analysis

Top Keywords

singlet oxygen
16
ethyl linoleate
8
formation hydroperoxides
8
quenching activity
8
influence β-carotene
4
lycopene
4
β-carotene lycopene
4
lycopene oxidation
4
oxidation ethyl
4
linoleate one-
4

Similar Publications

Versatile electrospun cobalt-doped carbon films for rapid antibiotic degradation.

J Environ Manage

December 2024

College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China. Electronic address:

This study presents a novel approach to water contamination remediation by developing cobalt-doped carbon nanofiber films using electrospun ZIF-67 precursors, aiming to degrade tetracycline hydrochloride (TCH) and other antibiotics. This method uniquely combines the advantages of metal-organic frameworks (MOFs) and electrospinning to enhance catalytic performance, demonstrating significant innovation in environmental catalysis. The research systematically evaluated the impact of various factors on the catalytic activity of carbonized PAN@ZIF-67 films (CPZF), including carbonization temperature, ZIF-67 content, and PMS dosage.

View Article and Find Full Text PDF

Ferrous oxalate (FeCO)-based composite has been recognized as an eminent catalyst for Cr(III)-ethylenediamine tetraacetic acid (Cr(III)-EDTA) decomplexation. However, their practical application has been limited by low cycling capacity and an ambiguous mechanism. In this research, a composite catalyst consisting of biotite loaded with nano FeCO (CFS90) was prepared directly from iron-containing silicate tailing.

View Article and Find Full Text PDF

Exploring Gluconamide-Modified Silica Nanoparticles of Different Sizes as Effective Carriers for Antimicrobial Photodynamic Therapy.

Nanomaterials (Basel)

December 2024

Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco, UPV-EHU, Apartado 644, 48080 Bilbao, Spain.

Antimicrobial resistance (AMR), a consequence of the ability of microorganisms, especially bacteria, to develop resistance against conventional antibiotics, hampering the treatment of common infections, is recognized as one of the most imperative health threats of this century. Antibacterial photodynamic therapy (aPDT) has emerged as a promising alternative strategy, utilizing photosensitizers activated by light to generate reactive oxygen species (ROS) that kill pathogens without inducing resistance. In this work, we synthesized silica nanoparticles (NPs) of different sizes (20 nm, 80 nm, and 250 nm) functionalized with the photosensitizer Rose Bengal (RB) and a gluconamide ligand, which targets Gram-negative bacteria, to assess their potential in aPDT.

View Article and Find Full Text PDF

Singlet Oxygen-Induced Mitochondrial Reset in Cancer: A Novel Approach for Ovarian Cancer Therapy.

Metabolites

November 2024

Research Laboratory in Applied Metabolic Engineering, Department of Chemical Engineering, Polytechnique Montréal, Centre-Ville Station, P.O. Box 6079, Montréal, QC H3C 3A7, Canada.

: This study explores the generation of singlet oxygen (SO) through methylene blue (MB) activation as a metabolic intervention for ovarian cancer. We aimed to examine the role of SO in modulating mitochondrial function, cellular metabolism, and proliferation in ovarian cancer cell lines compared to control cells. : The study utilized two ovarian cancer cell lines, OV1369-R2 and TOV1369, along with ARPE-19 control cells.

View Article and Find Full Text PDF

The high abundance of acetone ((CH)C═O), which makes it a good candidate for oxygenated molecules, and the high reactivity of oxygen atoms in the first excited state O(D) are two well-known facts in the chemistry of the atmosphere. In this research, we prove that the singlet oxygen and acetone system is capable of proceeding through multiwell multipath reactions, leading to the production of several organic aerosols. Hence, the nature of species released by the (CH)C═O + O(D) reaction to air can be clarified by profound attention to the possible routes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!