This article presents the results of the cross-linking of oxidized flake graphene (GO) using hydrazine at room temperature. Conducting the process at temperatures up to 30 °C allowed to eliminate the phenomenon of thermal GO reduction to its non-oxidized form. In addition, based on the Infrared and Raman spectroscopy as well as X-ray photoelectron spectroscopy (XPS) analysis, the cross-linking ability of GO was observed depending on its size and degree of oxidation. These parameters were associated with selected physicochemical and electrical properties of obtained 3D structures. Three GO flakes sizes were tested in three different oxidation degrees. It was shown that, regardless of the size of GO, it is crucial to achieve a specific oxidation degree threshold which for the conducted tests was a >20% share of oxygen atoms in the whole structure. This value determines the ability to cross-link with hydrazine thanks to which it is possible to synthesize the spatial structure in which the π-π interactions among individual flakes are significantly reduced. This directly translates into the fact that the 3D structure shows an electrical resistance value in the range of 4-103 Ω, depending on the size and oxidation degree of the used material. The explanation of this phenomenon related to the electrical conductivity of 3D structures was confirmed based on the molecular modeling of the chemical structures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7040656 | PMC |
http://dx.doi.org/10.3390/ma13030681 | DOI Listing |
Naunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China.
Asthma, a widespread chronic inflammatory disease can contribute to different degrees of lung function damage. The objective of this study is to explore the potential effects of nitric oxide synthase (NOS) inhibitors in asthma using mice model induced by ovalbumin (OVA). BALB/c mice were treated with OVA to establish an asthma model.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2025
Joint Degree Program of Kasetsart University and Yamaguchi University, Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan.
Unlabelled: Incomplete oxidation of glucose by sp. strain CHM43 produces gluconic acid and then 2- or 5-ketogluconic acid. Although 2-keto-D-gluconate (2KG) is a valuable compound, it is sometimes consumed by itself via an unknown metabolic pathway.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Jilin University, State Key Laboratory of Supramolecular Structure and Materials, 2699 Qianjin Street, 130012, Changchun, CHINA.
To date, few systematic approach has been established for predicting catalytic performance by analyzing the spectral information of molecules adsorbed on photocatalyst surfaces. Effective charge transfer (CT) between the semiconductor photocatalysts and surface-absorbed molecules is essential for enhancing catalytic activity and optimizing light energy utilization. This study aimed to validate the surface-enhanced Raman spectroscopy (SERS) based on the CT enhancement mechanism in investigating the CT process during semiconductor photocatalytic C-C coupling model reactions.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Institute of Chinese Materia Medica, Shaanxi Provincial Academy of Traditional Chinese Medicine, Xi'an, Shaanxi, China.
Drought stress inhibits Bunge () seedling growth and yield. Here, we studied the effects of drought stress on the different parts of seedlings through physiological, transcriptomic, and metabolomics analyses, and identified key genes and metabolites related to drought tolerance. Physiological analysis showed that drought stress increased the accumulation of hydrogen peroxide (HO), enhanced the activity of peroxidase (POD), decreased the activity of catalase (CAT) and the contents of chlorophyll b and total chlorophyll, reduced the degree of photosynthesis, enhanced oxidative damage in seedlings, and inhibited the growth of plants.
View Article and Find Full Text PDFHeliyon
January 2025
Faculty of Material and Manufacturing Technologies, Malek Ashtar University of Technology, P.O. Box 1774-15875, Tehran, Iran.
The potential of epoxy-graphene oxide (GO) nanocomposites to improve the mechanical characteristics of conventional epoxy resins is causing them to gain prominence. This makes them appropriate for advanced engineering applications, including structural materials, automotive, and aerospace. This study aimed to develop an epoxy/GO composite with improved mechanical properties through synthesizing epoxy/GO samples with varying GO content (from 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!