Curing HIV infection will require the elimination of a reservoir of infected CD4+ T cells that persists despite HIV-specific cytotoxic T cell (CTL) responses. Although viral latency is a critical factor in this persistence, recent evidence also suggests a role for intrinsic resistance of reservoir-harboring cells to CTL killing. This resistance may have contributed to negative outcomes of clinical trials, where pharmacologic latency reversal has thus far failed to drive reductions in HIV reservoirs. Through transcriptional profiling, we herein identified overexpression of the prosurvival factor B cell lymphoma 2 (BCL-2) as a distinguishing feature of CD4+ T cells that survived CTL killing. We show that the inducible HIV reservoir was disproportionately present in BCL-2hi subsets in ex vivo CD4+ T cells. Treatment with the BCL-2 antagonist ABT-199 was not sufficient to drive reductions in ex vivo viral reservoirs when tested either alone or with a latency-reversing agent (LRA). However, the triple combination of strong LRAs, HIV-specific T cells, and a BCL-2 antagonist uniquely enabled the depletion of ex vivo viral reservoirs. Our results provide rationale for novel therapeutic approaches targeting HIV cure and, more generally, suggest consideration of BCL-2 antagonism as a means of enhancing CTL immunotherapy in other settings, such as cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7191002 | PMC |
http://dx.doi.org/10.1172/JCI132374 | DOI Listing |
Br J Hosp Med (Lond)
January 2025
Department of Infectious Diseases, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
Epidemiological studies indicate that the involvement of the immune system in the pathogenesis of infections associated with chronic obstructive pulmonary disease (COPD), asthma, and interstitial lung disease (ILD) remains unclear. This study aims to assess the potential causal link between infections associated with COPD, asthma, or ILD and immune system function. We conducted a two-sample Mendelian randomization analysis using publicly available genome-wide association study (GWAS) datasets.
View Article and Find Full Text PDFViruses
January 2025
Centre for Virus Research, The Westmead Institute for Medical Research, Westmead 2145, Australia.
Anogenital inflammation is a critical risk factor for HIV acquisition. The primary preventative HIV intervention, pre-exposure prophylaxis (PrEP), is ineffective in blocking transmission in anogenital inflammation. Pre-existing sexually transmitted diseases (STIs) and anogenital microbiota dysbiosis are the leading causes of inflammation, where inflammation is extensive and often asymptomatic and undiagnosed.
View Article and Find Full Text PDFViruses
January 2025
Laboratório de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz (IOC), FIOCRUZ, Rio de Janeiro 21040-360, Brazil.
Background: Severe COVID-19 presents a variety of clinical manifestations associated with inflammatory profiles. People living with HIV (PLWH) could face a higher risk of hospitalization and mortality from COVID-19, depending on their immunosuppression levels. This study describes inflammatory markers in COVID-19 clinical outcomes with and without HIV infection.
View Article and Find Full Text PDFViruses
January 2025
Virology Department, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania.
Cytomegalovirus infections and reactivations are more frequent in people living with HIV (PLWH) and have been associated with increased risk of HIV progression and immunosenescence. We explored the impact of combination antiretroviral therapy (cART) on latent CMV infection in 225 young adults parenterally infected with HIV during childhood. Anti-CMV IgG antibodies were present in 93.
View Article and Find Full Text PDFNutrients
January 2025
Clinical Immunology Outpatient Clinic, Division of Internal Medicine, Department of Advanced Medical and Surgical Sciences, "Luigi Vanvitelli" University of Campania, 80131 Naples, Italy.
Celiac disease (CeD) is a chronic, lifelong, multifactorial, polygenic, and autoimmune disorder, characteristically triggered by exposure to the exogenous factor "gluten" in genetically predisposed individuals, with resulting duodenal inflammation and enteropathy, as well as heterogeneous multisystemic and extraintestinal manifestations. The immunopathogenesis of CeD is complex, favored by a peculiar human leukocyte antigen (HLA) genetic predisposition, leading to gluten presentation by antigen-presenting cells to CD4+ T helper (Th) cells, T cell-B cell interactions, and production of specific antibodies, resulting in the immune-mediated killing of enterocytes and, macroscopically, in duodenal inflammation. Here, the most relevant correlations between cellular and molecular aspects and clinical manifestations of this complex disease are reviewed, with final considerations on nutritional aspects for disease management.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!