Fine-scale evolutionary dynamics can be challenging to tease out when focused on the broad brush strokes of whole populations over long time spans. We propose a suite of diagnostic analysis techniques that operate on lineages and phylogenies in digital evolution experiments, with the aim of improving our capacity to quantitatively explore the nuances of evolutionary histories in digital evolution experiments. We present three types of lineage measurements: lineage length, mutation accumulation, and phenotypic volatility. Additionally, we suggest the adoption of four phylogeny measurements from biology: phylogenetic richness, phylogenetic divergence, phylogenetic regularity, and depth of the most-recent common ancestor. In addition to quantitative metrics, we also discuss several existing data visualizations that are useful for understanding lineages and phylogenies: state sequence visualizations, fitness landscape overlays, phylogenetic trees, and Muller plots. We examine the behavior of these metrics (with the aid of data visualizations) in two well-studied computational contexts: (1) a set of two-dimensional, real-valued optimization problems under a range of mutation rates and selection strengths, and (2) a set of qualitatively different environments in the Avida digital evolution platform. These results confirm our intuition about how these metrics respond to various evolutionary conditions and indicate their broad value.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1162/artl_a_00313 | DOI Listing |
Chronic wounds, due to their high prevalence, are a serious global health concern. Effective therapeutic strategies can significantly accelerate healing, thereby reducing the risk of complications and alleviating the economic burden on healthcare systems. Although numerous experimental studies have investigated wound healing, most rely on qualitative observations or quantitative direct measurements.
View Article and Find Full Text PDFR I Med J (2013)
February 2025
Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence RI.
Coronary artery disease (CAD) remains a leading cause of morbidity and mortality worldwide, necessitating advancements in diagnostic techniques. Coronary CT angiography (CCTA) has emerged as a pivotal non-invasive tool for evaluating coronary artery anatomy and detecting atherosclerotic plaque burden with high spatial resolution. This review explores the evolution of CCTA, highlighting its technological advancements, clinical applications, and challenges.
View Article and Find Full Text PDFPhytoKeys
January 2025
Laboratory of Plant Resources Conservation and Sustainable Utilization & Key Laboratory of Digital Botanical Garden of Guangdong Province, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China South China Botanical Garden, Chinese Academy of Sciences Guangzhou China.
, a new species of Ericaceae from Yunnan, China, is described and illustrated. This new species resembles and , but differs from the former by its linear or narrowly oblong and bullate leaf blade with a strongly recurved leaf margin and obvious reticulate veinlets adaxially, and larger flowers with yellow green and glabrous corollas and longer stamens, and can be distinguished from the latter by having glabrous twigs, linear or narrowly oblong leaf blades, yellow green corollas and exerted style.
View Article and Find Full Text PDFSci Rep
January 2025
Departamento de Física Teórica, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
We use digital quantum computing to simulate the creation of particles in a dynamic spacetime. We consider a system consisting of a minimally coupled massive quantum scalar field in a spacetime undergoing homogeneous and isotropic expansion, transitioning from one stationary state to another through a brief inflationary period. We simulate two vibration modes, positive and negative for a given field momentum, by devising a quantum circuit that implements the time evolution.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
January 2025
Department of Life Sciences, University of Coimbra, CEMMPRE, ARISE, Coimbra, Portugal.
Three bacterial strains, designated FZUC8N2.13, FBOR7N2.3 and FZUR7N2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!