The dentate gyrus of the hippocampus is one of two brain areas generating throughout life new neurons, which contribute to the formation of episodic/associative memories. During aging, the production of new neurons decreases and a cognitive decline occurs. Dietary factors influence neuronal function and synaptic plasticity; among them the phenolic compound hydroxytyrosol (HTyr), present in olive oil, displays neuroprotective effects. As age impacts primarily on the hippocampus-dependent cognitive processes, we wondered whether HTyr could stimulate hippocampal neurogenesis in vivo in adult and aged wild-type mice as well as in the B-cell translocation 1 gene (Btg1) knockout mouse model of accelerated neural aging. We found that treatment with HTyr activates neurogenesis in the dentate gyrus of adult, aged, and Btg1-null mice, by increasing survival of new neurons and decreasing apoptosis. Notably, however, in the aged and Btg1-null dentate gyrus, HTyr treatment also stimulates the proliferation of stem and progenitor cells, whereas in the adult dentate gyrus HTyr lacks any proliferative effect. Moreover, the new neurons generated in aged mice after HTyr treatment are recruited to existing circuits, as shown by the increase of BrdU /c-fos neurons. Finally, HTyr treatment also reduces the markers of aging lipofuscin and Iba1. Overall, our findings indicate that HTyr treatment counteracts neurogenesis decline during aging.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.201902643RDOI Listing

Publication Analysis

Top Keywords

dentate gyrus
20
htyr treatment
16
stem progenitor
8
htyr
8
adult aged
8
aged btg1-null
8
gyrus htyr
8
aged
5
dentate
5
gyrus
5

Similar Publications

The integral role of in brain function: from neurogenesis to synaptic plasticity and social behavior.

Acta Neurobiol Exp (Wars)

January 2025

Laboratory of Animal Models, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.

The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) gene is a critical tumor suppressor that plays an essential role in the development and functionality of the central nervous system. Located on chromosome 10 in humans and chromosome 19 in mice, PTEN encodes a protein that regulates cellular processes such as division, proliferation, growth, and survival by antagonizing the PI3K‑Akt‑mTOR signaling pathway. In neurons, PTEN dephosphorylates phosphatidylinositol‑3,4,5‑trisphosphate (PIP3) to PIP2, thereby modulating key signaling cascades involved in neurogenesis, neuronal migration, and synaptic plasticity.

View Article and Find Full Text PDF

Regulation of dentate gyrus pattern separation by hilus ectopic granule cells.

Cogn Neurodyn

December 2025

State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, #10 Xitucheng Road, Beijing, 100876 People's Republic of China.

The dentate gyrus (DG) in hippocampus is reported to perform pattern separation, converting similar inputs into different outputs and thus avoiding memory interference. Previous studies have found that human and mice with epilepsy have significant pattern separation defects and a portion of adult-born granule cells (abGCs) migrate abnormally into the hilus, forming hilus ectopic granule cells (HEGCs). For the lack of relevant pathophysiological experiments, how HEGCs affect pattern separation remains unclear.

View Article and Find Full Text PDF

Purpose: A comprehensive literature review was undertaken to understand the effects and underlying mechanisms of cranial radiotherapy (RT) on the hippocampus and hippocampal neurogenesis as well as to explore protective factors and treatments that might mitigate these effects in preclinical studies.

Methods: PubMed/MEDLINE, Web of Science, and Embase were queried for studies involving the effects of radiation on the hippocampus and hippocampal neurogenesis. Data extraction followed the Animal Research Reporting of In Vivo Experiments (ARRIVE) guidelines, and a risk of bias assessment was conducted for the included animal studies using the Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE) risk of bias tool.

View Article and Find Full Text PDF

Hippocampal reelin and GAD67 gene expression and methylation in the GFAP.HMOX1 mouse model of schizophrenia.

Biochim Biophys Acta Mol Cell Res

January 2025

Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada. Electronic address:

Schizophrenia is a complex neuropsychiatric disorder featuring enhanced brain oxidative stress and deficient reelin protein. GFAP.HMOX1 mice that overexpress heme oxygenase-1 (HO-1) in astrocytes manifest a schizophrenia-like neurochemical, neuropathological and behavioral phenotype including brain oxidative stress and reelin downregulation.

View Article and Find Full Text PDF

Cocaine-Induced Microglial Impairment and Its Rehabilitation by PLX-PAD Cell Therapy.

Int J Mol Sci

December 2024

Neuropharmacology Laboratory, The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel.

Chronic cocaine use triggers inflammatory and oxidative processes in the central nervous system, resulting in impaired microglia. Mesenchymal stem cells, known for their immunomodulatory properties, have shown promise in reducing inflammation and enhancing neuronal survival. The study employed the cocaine self-administration model, focusing on ionized calcium-binding adaptor protein 1 (Iba-1) and cell morphology as markers for microglial impairment and PLX-PAD cells as a treatment for attenuating cocaine craving.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!