Conditioned medium (CM) (cell secretome) is a cocktail of growth factors, cytokines, and other soluble mediators secreted by cells into a culture medium. These growth factors are fundamental in many cellular processes such as cell growth, differentiation, and others and the composition of these factors is individual for each cell type. Osteoclasts are large multinucleated cells that are responsible for bone resorption. Immune and cancer cells are known to produce different growth factors, which are able to induce or inhibit osteoclast differentiation. Herein, we evaluated the effect of CM obtained from the supernatant of activated and non-activated Jukart-E6 cells, as well as from one murine (B16-F10) and one human melanoma cell line (SK-MEL-28). To induce osteoclast differentiation, murine bone marrow mononuclear cells were cultured in the presence and absence of differentiation factors (DF), such as macrophage colony-stimulating factor, prostaglandin E2, receptor activator of nuclear factor-κB ligand, and CM. We measured the concentration of interleukin 6, tumor necrosis factor-α and interferon γ (IFN-γ) in CM that can inhibit or induce osteoclastogenesis. Our study demonstrated that CM obtained from each cell line suppresses or inhibits osteoclasts formation at early and intermediate stages of differentiation in the absence or presence of DF. CM obtained from activated Jurkat-E6 cells demonstrates a stronger effect when compared with CM from naïve Jurkat-E6 cells or human and murine melanoma cells. Moreover, CM obtained from activated Jurkat-E6 cells shows higher secretion of IFN-γ, which is an inhibitor of osteoclastogenesis, in comparison with CM obtained from the three other cell lines. On the other hand, CM derived from B16-F10 cells showed a smaller inhibitory effect when compared with CM derived from the other cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cbin.11317 | DOI Listing |
Front Oncol
October 2024
Enara Bio Ltd., Oxford, United Kingdom.
Background: Major histocompatibility complex class-1-related protein (MR1), unlike human leukocyte antigen (HLA) class-1, was until recently considered to be monomorphic. MR1 presents metabolites in the context of host responses to bacterial infection. MR1-restricted TCRs specific to tumor cells have been described, raising interest in their potential therapeutic application for cancer treatment.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2024
NanoSensing Group, Department of Chemistry, Ghent University, Krijgslaan 281-S3, 9000 Ghent, Belgium.
In recent years, optical temperature probes operating in the second near-infrared (BW-II) and third near-infrared (BW-III) biological windows have garnered significant attention in the scientific community. For biological applications these probes offer distinct advantages, including enhanced tissue penetration depth, minimal autofluorescence, and a remarkable improvement in imaging sensitivity and spatial resolution. Moving toward theranostic applications, there is a growing demand for the development of materials that integrate both BW-II and BW-III thermometry systems with drug delivery functionalities.
View Article and Find Full Text PDFBiomed Rep
November 2024
Biomolecules and Infant Health Laboratory, CONAHCYT-National Institute of Pediatrics, Ministry of Health, Mexico City 04530, Mexico.
The classic enzymatic function of acetylcholinesterase (AChE) is the hydrolysis of acetylcholine (ACh) in the neuronal synapse. However, AChE is also present in nonneuronal cells such as lymphocytes. Various studies have proposed the participation of AChE in the development of cancer.
View Article and Find Full Text PDFJ Pharmacol Toxicol Methods
July 2024
Department of Paediatrics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada; Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.
Biophys J
August 2024
Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, Illinois. Electronic address:
T cells coordinate intercellular communication through the meticulous regulation of cytokine secretion. Direct visualization of vesicular transport and intracellular distribution of cytokines provides valuable insights into the temporal and spatial mechanisms involved in regulation. Employing Jurkat E6-1 T cells and interleukin-2 (IL-2) as a model system, we investigated vesicular dynamics using single-particle tracking and the nanoscale distribution of intracellular IL-2 in fixed T cells using superresolution microscopy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!