Purpose: The purpose of this study is to investigate the effect of different magnetic resonance (MR) sequences on the accuracy of deep learning-based synthetic computed tomography (sCT) generation in the complex head and neck region.

Methods: Four sequences of MR images (T1, T2, T1C, and T1DixonC-water) were collected from 45 patients with nasopharyngeal carcinoma. Seven conditional generative adversarial network (cGAN) models were trained with different sequences (single channel) and different combinations (multi-channel) as inputs. To further verify the cGAN performance, we also used a U-net network as a comparison. Mean absolute error, structural similarity index, peak signal-to-noise ratio, dice similarity coefficient, and dose distribution were evaluated between the actual CTs and sCTs generated from different models.

Results: The results show that the cGAN model with multi-channel (i.e., T1 + T2 + T1C + T1DixonC-water) as input to predict sCT achieves higher accuracy than any single MR sequence model. The T1-weighted MR model achieves better results than T2, T1C, and T1DixonC-water models. The comparison between cGAN and U-net shows that the sCTs predicted by cGAN retains additional image details are less blurred and more similar to the actual CT.

Conclusions: Conditional generative adversarial network with multiple MR sequences as model input shows the best accuracy. The T1-weighted MR images provide sufficient image information and are suitable for sCT prediction in clinical scenarios with limited acquisition sequences or limited acquisition time.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mp.14075DOI Listing

Publication Analysis

Top Keywords

generative adversarial
12
adversarial network
12
head neck
8
t1c t1dixonc-water
8
conditional generative
8
limited acquisition
8
sequences
5
cgan
5
multi-sequence image-based
4
image-based synthetic
4

Similar Publications

To decrease the number of chronic kidney disease (CKD), early diagnosis of diabetic kidney disease is required. We performed invariant information clustering (IIC)-based clustering on glomerular images obtained from nephrectomized kidneys of patients with and without diabetes. We also used visualizing techniques (gradient-weighted class activation mapping (Grad-CAM) and generative adversarial networks (GAN)) to identify the novel and early pathological changes on light microscopy in diabetic nephropathy.

View Article and Find Full Text PDF

The emergence of infectious disease and antibiotic resistance in bacteria like Escherichia coli (E. coli) shows the necessity for novel computational techniques for identifying essential genes that contribute to resistance. The task of identifying resistant strains and multi-drug patterns in E.

View Article and Find Full Text PDF

Diffusion models, variational autoencoders, and generative adversarial networks (GANs) are three common types of generative artificial intelligence models for image generation. Among these, GANs are the most frequently used for medical image generation and are often employed for data augmentation in various studies. However, due to the adversarial nature of GANs, where the generator and discriminator compete against each other, the training process can sometimes end with the model unable to generate meaningful images or even producing noise.

View Article and Find Full Text PDF

The disease affects the optic nerve and represents the principle reasons of irreversible vision loss, mostly asymptomatic and uncontrolled. Consequently, early and accurate diagnosis is critical to prevent or reduce its effect, however, conventional diagnostic techniques often fail to provide concrete results. In this regard, we present a new approach built on Generative Adversarial Networks (GAN) and MobileNetV2 pretrained architecture for diagnosing glaucoma.

View Article and Find Full Text PDF

This dataset is generated from real-time simulations conducted in MATLAB/Simscape, focusing on the impact of smart noise signals on battery energy storage systems (BESS). Using Deep Reinforcement Learning (DRL) agent known as Proximal Policy Optimization (PPO), noise signals in the form of subtle millivolt and milliampere variations are strategically created to represent realistic cases of False Data Injection Attacks (FDIA). These signals are designed to disrupt the State of Charge (SoC) and State of Health (SoH) estimation blocks within Unscented Kalman Filters (UKF).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!