The transcriptomic response of green microalga Chlorella sorokiniana exposure to environmentally relevant concentration of cadmium(II) (Cd) and 4-n-nonylphenol (4-n-NP) was compared in the present study. Cd and 4-n-NP exposure showed a similar pattern of dys-regulated pathways. The photosystem was affected due to suppression of chlorophyll biosynthesis via down-regulation of Mg-protoporphyrin IX chelatase subunit ChlD (CHLD) and divinyl chlorophyllide a 8-vinyl-reductase (DVR) in Cd group and via down-regulation of DVR in 4-n-NP group. Furthermore, the reactive oxygen species (ROS) could be induced through down-regulation of solanesyl diphosphate synthase 1 (SPS1) and homogentisate phytyltransferase (HPT) in Cd group and via down-regulation of HPT in 4-n-NP group. Additionally, Cd and 4-n-NP would both cause the dys-regulation of carbohydrate metabolism and protein synthesis. On the other hand, there are some different responses or detoxification mechanism of C. sorokiniana to 4-n-NP stress compared to Cd exposure. The increased ROS would cause the DNA damage and protein destruction in Cd exposure group. Simultaneously, the RNA transcription was dys-regulated and a series of changes in gene expressions were observed. This included lipid metabolism, protein modification, and DNA repair, which involved in response of C. sorokiniana to Cd stress or detoxification of Cd. For 4-n-NP exposure, no effect on lipid metabolism and DNA repair was observed. The nucleotide metabolism including pyrimidine metabolism and purine metabolism was significantly up-regulated in the 4-n-NP exposure group, but not in the Cd exposure group. In addition, 4-n-NP would induce the ubiquitin-mediated proteolysis and proteasomal degradation to diminish the misfolded protein caused by ROS and down-regulation of heat shocking protein 40. In sum, the Cd and 4-n-NP could cause the same toxicological effects via the common pathways and possess similar detoxification mechanism. They also showed different responses in nucleotide metabolism, lipid metabolism, and DNA repair.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10653-020-00526-1 | DOI Listing |
Ecotoxicol Environ Saf
November 2024
Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China. Electronic address:
Alkylphenols (APs) may cause gestational diabetes mellitus (GDM) in pregnant women by impairing glucose metabolism through endocrine disruption. However, the current literature has limited epidemiological evidence on the association between APs exposure and the risk of GDM, especially the lack of evidence on joint exposure. Thus, we evaluated the effect of exposure to APs during early pregnancy on the risk of GDM.
View Article and Find Full Text PDFEcotoxicol Environ Saf
September 2024
Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, Guangxi 530021, China. Electronic address:
The liver toxicity of alkylphenols (APs) has been demonstrated in animal studies. However, relevant epidemiological evidence is still lacking in humans, especially during pregnancy. We obtained the levels of biochemical indicators of liver function in early (<13 weeks, mean gestation=9.
View Article and Find Full Text PDFEnviron Health
February 2024
Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China.
Environ Pollut
March 2024
Bursa Technical University, Department of Environmental Engineering, Bursa, Turkiye.
J Hazard Mater
April 2023
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
4-n-nonylphenol (4-n-NP), a typical endocrine disrupting chemical, has been so far frequently detected in various environmental mediums and editable food. However, the specific metabolic pathways in human and potential adverse effects of metabolites have not been elucidated yet. Here, metabolic profiling of 4-n-NP in human liver microsome (HLM) was comprehensively characterized by integrated approaches of testing and assessment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!