Background: Arginine vasopressin has been used for the management of refractory vasodilatory shock. However, it is still unclear whether arginine vasopressin is useful for hypotension in patients with spinal cord injury.

Case Description: A 78-year-old man with autonomic dysreflexia and paralysis below the level corresponding to Th2 due to spinal cord injury previously underwent cholecystectomy. During the surgery, accidental hemorrhage led him to refractory hemorrhagic shock unresponsive to fluid resuscitation and catecholamine. Lasting hypotension was improved with arginine vasopressin.

Conclusion: We described a rare case report on the use of arginine vasopressin for management of refractory hemorrhagic shock in a patient with autonomic dysreflexia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6966762PMC
http://dx.doi.org/10.1186/s40981-018-0216-8DOI Listing

Publication Analysis

Top Keywords

arginine vasopressin
16
vasopressin management
12
management refractory
12
refractory hemorrhagic
12
hemorrhagic shock
12
autonomic dysreflexia
12
spinal cord
12
shock patient
8
patient autonomic
8
cord injury
8

Similar Publications

A lipidated peptide derived from the C-terminal tail of the vasopressin 2 receptor shows promise as a new β-arrestin inhibitor.

Pharmacol Res

January 2025

Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada; Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada; RECITAL International Partnership Lab, Université de Caen-Normandie, Caen, France & Université de Sherbrooke, Sherbrooke, QC, Canada. Electronic address:

β-arrestins play pivotal roles in seven transmembrane receptor (7TMR) signalling and trafficking. To study their functional role in regulating specific receptor systems, current research relies mainly on genetic tools, as few pharmacological options are available. To address this issue, we designed and synthesised a novel lipidated phosphomimetic peptide inhibitor targeting β-arrestins, called ARIP, which was developed based on the C-terminal tail (A343-S371) of the vasopressin V2 receptor.

View Article and Find Full Text PDF

[Revisiting the vasopressin V2 receptor].

Sheng Li Xue Bao

December 2024

Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.

Arginine vasopressin (AVP) plays a crucial role in various physiological processes including water reabsorption, cardiovascular homeostasis, hormone secretion, and social behavior. AVP acts through three distinct receptor subtypes, i.e.

View Article and Find Full Text PDF

Introduction: Pro-arginine vasopressin consists of three peptides: . AVP is released by the neurohypophysis in response to increased plasma osmolality, decreased blood volume and stress. Copeptin has the advantage of being stable ex vivo and easy to measure.

View Article and Find Full Text PDF

The and of Vincent van Gogh: neuropeptides of bondedness and loss.

Front Psychol

December 2024

Department of Neurobiology and Biophysics, University of Washington, Seattle, WA, United States.

We introduce two Korean-named yet transcultural feelings, and , to fill gaps in neuroscientific understanding of mammalian bondedness, loss, and aggression. is a visceral sense of connectedness to a person, place, or thing that may arise after proximity, yet does not require intimacy. The brain opioid theory of social attachment (BOTSA) supports the idea that involves increased activity of enkephalins and beta-endorphins.

View Article and Find Full Text PDF

Numerous compounds involved in the regulation of the cardiovascular system are also engaged in the control of metabolism. This review gives a survey of literature showing that arginine vasopressin (AVP), which is an effective cardiovascular peptide, exerts several direct and indirect metabolic effects and may play the role of the link adjusting blood supply to metabolism of tissues. Secretion of AVP and activation of AVP receptors are regulated by changes in blood pressure and body fluid osmolality, hypoxia, hyperglycemia, oxidative stress, inflammation, and several metabolic hormones; moreover, AVP turnover is regulated by insulin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!