Aims: The milk fat globule-epidermal growth factor 8 (MFGE8), also called lactadherin, is an integrin ligand and a known mediator of inflammation and atherosclerosis in T2DM in studies using animal models. However, its role in the pathophysiology of human T2DM, obesity, and cardiovascular disease has been poorly explored. Aim of this study  was to investigate the role of a missense variant (rs371227978 C/T: Arg148His) in the MFGE8 gene identified through exome sequencing for its association with T2DM and cardiometabolic traits.

Methods: Exome-wide sequencing was performed using DNA samples from 68 Sikh individuals from multi-generation pedigrees affected with diabetes on Illumina's GAIIx using "SureSelect Human All Exon" panels. We further replicated this variant by de novo genotyping in a total of 4242 individuals of the Asian Indian Diabetic Heart Study/Sikh Diabetes Study using custom TaqMan genotyping assay. We also measured circulating concentrations of Mfge8 using frozen serum aliquots by enzyme-linked immunosorbent assay.

Results: Overall, only 1.78% of 4242 individuals were carriers of this variant with MAF being 0.009. Except for the significant correlation of this variant with T2DM and triglycerides, no other quantitative risk phenotype was significant. The minor per allele-associated increased risk for T2DM showed odds ratio of 1.95 (95% CI 1.18-3.23; p = 0.008) in unadjusted model and was 1.73 (95% CI 1.02-2.93; p = 0.043) after adjusting for the age, gender, and BMI. However, there was a strong correlation between serum Mfge8 concentrations with T2DM, (r = 0.38; p = 0.001), fasting glucose (r= 0.36; p = 0.002), and triglycerides (r = 0.33; p = 0.005). Our data revealed a significant dose-related increase in MFGE8 genotypes for affecting serum Mfge8 (p = 2.1 × 10) and triglyceride concentrations (p = 3.2 × 10). For a per risk allele-associated increase of 4.74 ng/ml ± SD of 1.62 ng/ml of the Mfge8 concentration was found to increase T2DM risk to 1.7 fold (95% CI from 1 to 3 fold).

Conclusions: Here, we report for the first time a novel population-specific rare variant in the MFGE8 gene linked with the increased Mfge8 concentrations and the risk for developing T2DM and cardiovascular risk factors in a population of Punjabi Sikhs from India. In view of a strong evidence from animal studies supporting the role of Mfge8 in obesity, insulin resistance, and the development of atherosclerosis in T2DM, our findings are important and timely. If validated in a large independent dataset, early screening of Mfge8 in blood levels may especially benefit those patients with genetically elevated Mfge8 levels to preventing or reducing the risk of T2DM and cardiovascular disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10502938PMC
http://dx.doi.org/10.1007/s00592-019-01463-xDOI Listing

Publication Analysis

Top Keywords

mfge8
13
cardiovascular disease
12
t2dm
11
missense variant
8
milk fat
8
factor mfge8
8
atherosclerosis t2dm
8
mfge8 gene
8
4242 individuals
8
risk t2dm
8

Similar Publications

hESC-derived extracellular vesicles enriched with MFGE-8 and the GSH redox system act as senotherapeutics for neural stem cells in ischemic stroke.

Free Radic Biol Med

January 2025

Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea. Electronic address:

Human embryonic stem cells (hESCs) and their extracellular vesicles (EVs) hold significant potential for tissue repair and regeneration. Neural stem cells (NSCs) in the adult brain often acquire senescent phenotypes after ischemic injuries, releasing neurodegenerative senescence-associated secretory phenotype factors. In this study, we investigated the senotherapeutic effects of hESC-EVs on NSCs and confirmed their neuroprotective effects in neurons via rejuvenation of NSC secretions.

View Article and Find Full Text PDF

Mouse embryonic fibroblasts (MEFs) have been widely used as feeder cells in embryonic stem cell cultures because they can mimic the embryonic microenvironment. Milk fat globule-epidermal growth factor 8 (MFGE8) is expressed during mouse gonadal development, 10.5-13.

View Article and Find Full Text PDF

MFGE8 induces anti-PD-1 therapy resistance by promoting extracellular vesicle sorting of PD-L1.

Cell Rep Med

January 2025

Department of Orthopaedics of the Second Affiliated Hospital and Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310009, China. Electronic address:

Anti-PD-1 therapy, effective in patients with various advanced tumors, still encounters the challenge of insensitivity in most patients. Here, we demonstrate that PD-L1 on tumor cell-derived extracellular vesicles (TEVs) is critical for anti-PD-1 therapy resistance. Reducing endogenous and transferring exogenous TEVs abrogates and induces anti-PD-1 therapy resistance, respectively.

View Article and Find Full Text PDF

Chitinase-3-like Protein 1 Reduces the Stability of Atherosclerotic Plaque via Impairing Macrophagic Efferocytosis.

J Cardiovasc Transl Res

January 2025

Department of Vascular and Endovascular Surgery, Changzheng Hospital, Affiliated to the Naval Medical University, Shanghai, 200003, China.

CHI3L1 is strongly associated with atherosclerosis, but its role in macrophages remains unknown. In this study, we observed a significant up-regulation of CHI3L1 in both carotid plaques and serum of symptomatic patients, and demonstrated that CHI3L1 impairs the efferocytosis of macrophages by down-regulating crucial efferocytic mediator MFGE8 through inhibiting ATF2, which binds directly to the enhancer of MFGE8. In human plaques, we observed a negative correlation between CHI3L1 expression and both ATF2 and MFGE8 levels, further proved their involvement in plaque destabilization.

View Article and Find Full Text PDF

Aim: Microcalcification increases the vulnerability of plaques and has become an important driver of acute cardiovascular events in diabetic patients. However, the regulatory mechanisms remain unclear. DJ-1, a multifunctional protein, may play a potential role in the development of diabetic complications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!