Attention deficit hyperactive disorder (ADHD) is the most common psychiatric disorder in children affecting around 11% of children 4-17 years of age (CDC 2019). Children with ADHD are widely treated with stimulant medications such as methylphenidate (Ritalin). However, there has been little research on the developmental effects of methylphenidate on risk-taking and sociability. We investigated in zebrafish the potential developmental neurobehavioral toxicity of methylphenidate on these behavioral functions. We chose zebrafish because they provide a model with extensive genetic tools for future mechanistic studies. We studied whether sub-chronic methylphenidate exposure during juvenile development causes neurobehavioral impairments in zebrafish. Methylphenidate diminished responses to environmental stimuli after both acute and sub-chronic dosing. In adult zebrafish, acute methylphenidate impaired avoidance of an approaching visual stimulus modeling a predator and decreased locomotor response to the social visual stimulus of conspecifics. Adult zebrafish dosed acutely with methylphenidate demonstrated behaviors of less retreat from threatening visual stimuli and less approach to conspecifics compared with controls. In a sub-chronic dosing paradigm during development, methylphenidate caused less robust exploration of a novel tank. In the predator avoidance paradigm, sub-chronic dosing that began at an older age (28 dpf) decreased activity levels more than sub-chronic dosing that began at earlier ages (14 dpf and 21 dpf). In the social shoaling task, sub-chronic methylphenidate attenuated reaction to the social stimulus. Acute and developmental methylphenidate exposure decreased response to environmental cues. Additional research is needed to determine critical mechanisms for these effects and to see how these results may be translatable to neurobehavioral toxicity of prescribing Ritalin to children and adolescents.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7716188PMC
http://dx.doi.org/10.1007/s00210-020-01835-zDOI Listing

Publication Analysis

Top Keywords

sub-chronic dosing
16
sub-chronic methylphenidate
12
methylphenidate
11
methylphenidate risk-taking
8
risk-taking sociability
8
neurobehavioral toxicity
8
methylphenidate exposure
8
adult zebrafish
8
visual stimulus
8
dosing began
8

Similar Publications

Safety assessment on CBD-rich hemp extract in sub-chronic cross-sex study with rats.

Toxicol Appl Pharmacol

December 2024

Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic. Electronic address:

Cannabidiol (CBD) is a phytocannabinoid from Cannabis sativa L., in which there is currently growing interest for medicinal use. Here, we focused on the safety and pharmacokinetics of a CBD-rich (77 %, w/w) full-spectrum hemp extract in male and female rats.

View Article and Find Full Text PDF

Sub-chronic and acute toxicity of aqueous extracts subsp. (Maire) Figuerola to rodents.

Toxicol Rep

December 2024

Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco.

Background: subsp. (Maire) Figuerola (SBm) is a plant endemic to Morocco and is one of the less studied species of Salvia. Herbal therapy is becoming more and more popular, especially in underdeveloped nations where access to medicinal herbs is affordable.

View Article and Find Full Text PDF

The Secretin receptor (SCTR) presents a promising path for hypertension management, with KSD179019 as identified as a Positive Allosteric Modulator (PAM) of SCTR, demonstrating anti-hypertensive effects in animal models. Our objective was to comprehensively evaluate the potential toxicity of KSD179019 through in vitro and in vivo investigations. Initial in vitro studies showed minimal toxicity in liver and kidney cells and non-mutagenicity in bacterial assays.

View Article and Find Full Text PDF

Background And Purpose: The limited effectiveness of current pharmacological treatments for alcohol use disorder (AUD) highlights the need for novel therapies. These may involve the glucagon-like peptide-1 receptor or the amylin receptor, as treatment with agonists targeting either of these receptors lowers alcohol intake. The complexity of the mechanisms underlying AUD indicates that combining agents could enhance treatment efficacy.

View Article and Find Full Text PDF
Article Synopsis
  • This study explored the effects of titanium dioxide nanoparticles (TiONPs) on Persian dragonhead plants grown hydroponically, focusing on varying concentrations from 0 to 2500 ppm over 21 days.
  • At 50 ppm TiONPs, the plants showed significant growth, with a 26.2% increase in shoot biomass and an 18.2% rise in height, while higher concentrations like 100 ppm negatively impacted key components such as carotenoids and chlorophyll.
  • The research indicated that low doses of TiONPs can enhance growth, while higher doses result in physiological stress and activate the plant's defense systems, suggesting 50 ppm as the optimal concentration for improved agricultural yields.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!