Eco-friendly approach to access of quinoxaline derivatives using nanostructured pyrophosphate NaPdPO as a new, efficient and reusable heterogeneous catalyst.

BMC Chem

1Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), VARENA Center, Rue Mohamed El Jazouli, Madinat Al Irfane, 10100 Rabat, Morocco.

Published: December 2020

In the present study, we report the synthesis of various quinoxaline derivatives from direct condensation of substituted aromatic 1,2-diamine with 1,2-dicarbonyl catalyzed by nanostructured pyrophosphate NaPdPO as a new highly efficient bifunctionalheterogeneous catalyst. The quinoxaline synthesis was performed in ethanol as a green and suitable solvent at ambient temperature to afford the desired quinoxalines with good to excellent yields in shorter reaction times. Many Quinoxaline derivatives were successfully synthesized using various 1,2-diketones and 1,2-diamines at room temperature. Catalyst reusability showed that the NaPdPO catalyst exhibited excellent recyclability without significant loss in its catalytic activity after five consecutive cycles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6996184PMC
http://dx.doi.org/10.1186/s13065-020-0662-zDOI Listing

Publication Analysis

Top Keywords

quinoxaline derivatives
12
nanostructured pyrophosphate
8
pyrophosphate napdpo
8
eco-friendly approach
4
approach access
4
quinoxaline
4
access quinoxaline
4
derivatives nanostructured
4
napdpo efficient
4
efficient reusable
4

Similar Publications

The one-pot transamination reactions on a zwitterionic benzoquinonemonoimine yield either a quinoxaline derivative or bis-zwitterionic macrocycles, depending on the number of carbon atoms bridging primary polyamines. These latter products, featuring two confined donor cavities, are the result of a [2 + 2] condensation without the need for template effect or high dilution conditions.

View Article and Find Full Text PDF

GPx1 deficiency confers increased susceptibility to ferroptosis in macrophages from individuals with active Crohn's disease.

Cell Death Dis

December 2024

Gastrointestinal Research Group, Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.

Intestinal cell death is a defining feature of Crohn's disease (CD), a major form of inflammatory bowel disease. The focus on this aspect of enteric inflammation has mainly been on epithelial cells, while other cell types such as stromal and myeloid cells have received less attention. Hypothesising that decreased macrophage viability in an oxidative environment could be a contributing factor to the pathophysiology of CD, we found that monocyte-derived macrophages from individuals with active CD (but not those in clinical disease remission) have increased sensitivity to cell death induced by HO.

View Article and Find Full Text PDF

Billions of patients struggle with dental diseases every year. These mainly comprise caries and related diseases. This results in an extremely high demand for innovative, polymer composite filling materials that meet a number of dental requirements.

View Article and Find Full Text PDF

Antimicrobial resistance remains a global issue, hindering the control of bacterial infections. This study examined the antimicrobial properties of 2,3-N,N-diphenyl quinoxaline derivatives against Gram-positive, Gram-negative, and Mycobacterium species. Two quinoxaline derivatives (compounds 25 and 31) exhibited significant activity against most strains of Staphylococcus aureus, Enterococcus faecium, and Enterococcus faecalis tested, with MIC values ranging from 0.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) ranks as the third most prevalent reason for cancer-related death on a global scale. Tyrosine kinase inhibitors (TKIs) continue to be the primary treatment option for advanced hepatocellular carcinoma. A series of fluoro-11H-indeno[1,2-b]quinoxaline derivatives as an HCC drug targeting the VEGFR2/AKT axis was designed and synthesized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!