In the present study, we report the synthesis of various quinoxaline derivatives from direct condensation of substituted aromatic 1,2-diamine with 1,2-dicarbonyl catalyzed by nanostructured pyrophosphate NaPdPO as a new highly efficient bifunctionalheterogeneous catalyst. The quinoxaline synthesis was performed in ethanol as a green and suitable solvent at ambient temperature to afford the desired quinoxalines with good to excellent yields in shorter reaction times. Many Quinoxaline derivatives were successfully synthesized using various 1,2-diketones and 1,2-diamines at room temperature. Catalyst reusability showed that the NaPdPO catalyst exhibited excellent recyclability without significant loss in its catalytic activity after five consecutive cycles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6996184 | PMC |
http://dx.doi.org/10.1186/s13065-020-0662-z | DOI Listing |
J Org Chem
December 2024
Aix-Marseille Université, CNRS UMR 7325 Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), Campus de Luminy, Marseille cedex 09 13288, France.
The one-pot transamination reactions on a zwitterionic benzoquinonemonoimine yield either a quinoxaline derivative or bis-zwitterionic macrocycles, depending on the number of carbon atoms bridging primary polyamines. These latter products, featuring two confined donor cavities, are the result of a [2 + 2] condensation without the need for template effect or high dilution conditions.
View Article and Find Full Text PDFCell Death Dis
December 2024
Gastrointestinal Research Group, Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
Intestinal cell death is a defining feature of Crohn's disease (CD), a major form of inflammatory bowel disease. The focus on this aspect of enteric inflammation has mainly been on epithelial cells, while other cell types such as stromal and myeloid cells have received less attention. Hypothesising that decreased macrophage viability in an oxidative environment could be a contributing factor to the pathophysiology of CD, we found that monocyte-derived macrophages from individuals with active CD (but not those in clinical disease remission) have increased sensitivity to cell death induced by HO.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, 85-326 Bydgoszcz, Poland.
Billions of patients struggle with dental diseases every year. These mainly comprise caries and related diseases. This results in an extremely high demand for innovative, polymer composite filling materials that meet a number of dental requirements.
View Article and Find Full Text PDFMicrobiologyopen
December 2024
Department of Life Sciences (DLS), Aberystwyth University, Aberystwyth, UK.
Antimicrobial resistance remains a global issue, hindering the control of bacterial infections. This study examined the antimicrobial properties of 2,3-N,N-diphenyl quinoxaline derivatives against Gram-positive, Gram-negative, and Mycobacterium species. Two quinoxaline derivatives (compounds 25 and 31) exhibited significant activity against most strains of Staphylococcus aureus, Enterococcus faecium, and Enterococcus faecalis tested, with MIC values ranging from 0.
View Article and Find Full Text PDFBioorg Chem
December 2024
Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo 11571, Egypt. Electronic address:
Hepatocellular carcinoma (HCC) ranks as the third most prevalent reason for cancer-related death on a global scale. Tyrosine kinase inhibitors (TKIs) continue to be the primary treatment option for advanced hepatocellular carcinoma. A series of fluoro-11H-indeno[1,2-b]quinoxaline derivatives as an HCC drug targeting the VEGFR2/AKT axis was designed and synthesized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!