Dataset on application of electrochemical and photochemical processes for sulfacetamide antibiotic elimination in water.

Data Brief

Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.

Published: April 2020

Sulfonamide-class antibiotics are recognized as water pollutants, which have negative environmental impacts. A strategy to deal with sulfonamides is throughout the application of oxidation processes. This work presents the treatment of the sulfacetamide (SAM) antibiotic by electrochemical oxidation, UV-C/HO and photo-Fenton process. It was established the main degradation routes during each process action. A DFT computational analysis for SAM structure was done and mass spectra of primary transformation products were determined. Chemical oxygen demand (COD), total organic carbon (TOC) and biochemical oxygen demand (BOD) were also followed. Additionally, SAM treatment in simulated seawater and hospital wastewater was measured. These data can be useful for comparative purposes about degradation of sulfonamide-class antibiotics by electrochemical and advanced oxidation processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6997661PMC
http://dx.doi.org/10.1016/j.dib.2020.105158DOI Listing

Publication Analysis

Top Keywords

sulfonamide-class antibiotics
8
oxidation processes
8
oxygen demand
8
dataset application
4
application electrochemical
4
electrochemical photochemical
4
photochemical processes
4
processes sulfacetamide
4
sulfacetamide antibiotic
4
antibiotic elimination
4

Similar Publications

Importance: Antibiotics are an important risk for Stevens-Johnson syndrome and toxic epidermal necrolysis (SJS/TEN), which are the most severe types of drug hypersensitivity reaction with a mortality rate up to 50%. To our knowledge, no global systematic review has described antibiotic-associated SJS/TEN.

Objective: To evaluate the prevalence of antibiotics associated with SJS/TEN worldwide.

View Article and Find Full Text PDF

Mycobacterium tuberculosis (Mtb) remains the deadliest pathogenic bacteria worldwide. The search for new antibiotics to treat drug-sensitive as well as drug-resistant tuberculosis has become a priority. The essential enzyme phenylalanyl-tRNA synthetase (PheRS) is an antibacterial drug target because of the large differences between bacterial and human PheRS counterparts.

View Article and Find Full Text PDF

Mycobacteria tuberculosis (Mtb) remains the deadliest pathogenic bacteria worldwide. The search for new antibiotics to treat drug-sensitive as well as drug-resistant tuberculosis has become a priority. The essential enzyme phenylalanyl-tRNA synthetase (PheRS) is an antibacterial drug target because of the large differences between bacterial and human PheRS counterparts.

View Article and Find Full Text PDF

From Antibacterial to Antitumour Agents: A Brief Review on The Chemical and Medicinal Aspects of Sulfonamides.

Mini Rev Med Chem

June 2021

Faculdade de Ciencias Farmaceuticas, Departamento de Alimentos e Medicamentos, Universidade Federal de Alfenas, MG, 37130-001, Brazil.

Sulfonamides have been in clinical use for many years, and the development of bioactive substances containing the sulfonamide subunit has grown steadily in view of their important biological properties such as antibacterial, antifungal, antiparasitic, antioxidant, and antitumour properties. This review addresses the medicinal chemistry aspects of sulfonamides; covering their discovery, the structure- activity relationship and the mechanism of action of the antibacterial sulfonamide class, as well as the physico-chemical and pharmacological properties associated with this class. It also provides an overview of the various biological activities inherent to sulfonamides, reporting research that emphasises the importance of this group in the planning and development of bioactive substances, with a special focus on potential antitumour properties.

View Article and Find Full Text PDF

Dataset on application of electrochemical and photochemical processes for sulfacetamide antibiotic elimination in water.

Data Brief

April 2020

Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.

Sulfonamide-class antibiotics are recognized as water pollutants, which have negative environmental impacts. A strategy to deal with sulfonamides is throughout the application of oxidation processes. This work presents the treatment of the sulfacetamide (SAM) antibiotic by electrochemical oxidation, UV-C/HO and photo-Fenton process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!