The lengths of intergenic regions between neighboring genes that are convergent, divergent, or unidirectional were calculated for plastids of the rhodophytic branch and complete archaeal and bacterial genomes. Statistically significant linear relationships between any pair of the medians of these three length types have been revealed in each genomic group. Exponential relationships between the optimal growth temperature and each of the three medians have been revealed as well. The leading coefficients of the regression equations relating all pairs of the medians as well as temperature and any of the medians have the same sign and order of magnitude. The results obtained for plastids, archaea, and bacteria are also similar at the qualitative level. For instance, the medians are always low at high temperatures. At low temperatures, the medians tend to statistically significant greater values and scattering. The original model was used to test our hypothesis that the intergenic distances are optimized in particular to decrease the competition of RNA polymerases within the locus that results in transcribing shortened RNAs. Overall, this points to an effect of temperature for both remote and close genomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6991167PMC
http://dx.doi.org/10.1155/2020/3465380DOI Listing

Publication Analysis

Top Keywords

optimal growth
8
growth temperature
8
intergenic distances
8
plastids rhodophytic
8
rhodophytic branch
8
medians
6
temperature
4
temperature intergenic
4
distances bacteria
4
bacteria archaea
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!