A Polyaddition Model for the Prebiotic Polymerization of RNA and RNA-Like Polymers.

Life (Basel)

Center for Studies in Physics and Biology, The Rockefeller University, New York, NY 10065, USA.

Published: February 2020

Implicit in the RNA world hypothesis is that prebiotic RNA synthesis, despite occurring in an environment without biochemical catalysts, produced the long RNA polymers which are essential to the formation of life. In order to investigate the prebiotic formation of long RNA polymers, we consider a general solution of functionally identical monomer units that are capable of bonding to form linear polymers by a step-growth process. Under the assumptions that (1) the solution is well-mixed and (2) bonding/unbonding rates are independent of polymerization state, the concentration of each length of polymer follows the geometric Flory-Schulz distribution. We consider the rate dynamics that produce this equilibrium; connect the rate dynamics, Gibbs free energy of bond formation, and the bonding probability; solve the dynamics in closed form for the representative special case of a Flory-Schulz initial condition; and demonstrate the effects of imposing a maximum polymer length. Afterwards, we derive a lower bound on the error introduced , we suggest methods to connect these theoretical predictions to experimental results.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7175168PMC
http://dx.doi.org/10.3390/life10020012DOI Listing

Publication Analysis

Top Keywords

long rna
8
rna polymers
8
rate dynamics
8
rna
5
polyaddition model
4
model prebiotic
4
prebiotic polymerization
4
polymerization rna
4
rna rna-like
4
polymers
4

Similar Publications

Background: Rex rabbit is famous for its silky and soft fur coat, a characteristic predominantly attributed to its hair follicles. Numerous studies have confirmed the crucial roles of mRNAs and non-coding RNAs (ncRNAs) in regulating key cellular processes such as cell proliferation, differentiation, apoptosis and immunity. However, their involvement in the regulation of the hair cycle in Rex rabbits remains unknown.

View Article and Find Full Text PDF

Evidence has shown that T-cell receptors (TCRs) that recognize the same epitopes may not be the exact TCR clonotypes but have slightly different TCR sequences. However, the changes in the genomic and transcriptomic signatures of these highly homologous T cells during immunotherapy remain unknown. Here, we examined the evolutionary features in circulating TCR clonotypes observed in tumors (tumor-infiltrating lymphocyte (TIL)-TCRs) by combining single-cell RNA/TCR sequencing of longitudinal blood samples and TCR sequencing of tumor tissue from a patient treated with anti-cytotoxic T-lymphocyte-associated protein 4/programmed cell death protein-1 therapy.

View Article and Find Full Text PDF

Orthoflaviviruses are emerging arthropod-borne pathogens whose replication cycle is tightly linked to host lipid metabolism. Previous lipidomic studies demonstrated that infection with the closely related hepatitis C virus (HCV) changes the fatty acid (FA) profile of several lipid classes. Lipids in HCV-infected cells had more very long-chain and desaturated FAs and viral replication relied on functional FA elongation and desaturation.

View Article and Find Full Text PDF

The Role of NF-κB/MIR155HG in Regulating the Stemness and Radioresistance in Breast Cancer Stem Cells.

Front Biosci (Landmark Ed)

January 2025

Department of Chemoradiotherapy, Ningbo No 2 Hospital, 315000 Ningbo, Zhejiang, China.

Background: Breast cancer stem cells (BCSCs) are instrumental in treatment resistance, recurrence, and metastasis. The development of breast cancer and radiation sensitivity is intimately pertinent to long non-coding RNA (lncRNA). This work is formulated to investigate how the lncRNA affects the stemness and radioresistance of BCSCs.

View Article and Find Full Text PDF

Dynamic Roles of RNA and RNA Epigenetics in HTLV-1 Biology.

Viruses

January 2025

Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA.

Since the discovery of RNA in the early 1900s, scientific understanding of RNA form and function has evolved beyond protein coding. Viruses, particularly retroviruses like human T-cell leukemia virus type 1 (HTLV-1), rely heavily on RNA and RNA post-transcriptional modifications to regulate the viral lifecycle, pathogenesis, and evasion of host immune responses. With the emergence of new sequencing technologies in the last decade, our ability to dissect the intricacies of RNA has flourished.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!