Influence of Different Surface Pretreatments on Shear Bond Strength of an Adhesive Resin Cement to Various Zirconia Ceramics.

Materials (Basel)

Department of Clinical, University of Pavia, Surgical, Diagnostic and Paediatric Sciences - Section of Dentistry, Piazzale Golgi 2, 27100 Pavia, Italy.

Published: February 2020

The aim of this in vitro study was to assess the influence of surface pretreatment on shear bond strength (SBS) of an adhesive resin cement (G-CEM Link Force TM, GC Corporation, Tokyo, Japan) to three different yttria-stabilized tetragonal zirconia polycrystalline (Y-TZP) ceramics: (1) Copran Zirconia Monolith HT, COP; (2) Katana ML Zirconia, KAT; and (3) Metoxit Z-CAD HTL Zirconia, MET. In total, 45 cylinders (5 mm in diameter, 1 mm height) for each type of zirconia ceramic were prepared used a computer-aided design and computer-aided manufacturing (CAD/CAM) machine (software CEREC 4.2). Each type of zirconia was subdivided into three groups and each group received a different surface pretreatment; 15 samples were not conditioned as control (groups COP 1, KAT 1, MET 1), 15 samples were air-borne particle abraded with aluminum dioxide particles of 50-μm size at 0.3 MPa for 20 s (groups COP 2, KAT 2, MET 2), and 15 samples were hot-etched with a solution of hydrochloric acid and ferric chloride (groups COP 3, KAT 3, MET 3). After specimen fabrication, the adhesive cement-ceramic interface was analyzed using an SBS test. Subsequently, the adhesive remnant index (ARI) was measured. Data were submitted to statistical analysis. Air-borne particle abraded specimens showed the highest SBS values for COP and KAT groups. For MET, no significant difference was reported between air-borne particle abraded specimens and untreated controls. The lowest values were detected for acid-etched groups. A higher frequency of ARI = "1" and ARI = "2" was reported in control and air-borne particle abraded groups, whereas ARI = "3" was detected in hot-etched groups. No correlation was found between ARI score and shear bond strength. Air-borne particle abrasion is considered the best treatment for Zirconia Copran and Zirconia Katana ML, if it is followed by using dual-curing resin cement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7040603PMC
http://dx.doi.org/10.3390/ma13030652DOI Listing

Publication Analysis

Top Keywords

air-borne particle
20
cop kat
16
particle abraded
16
shear bond
12
bond strength
12
resin cement
12
groups cop
12
kat met
12
zirconia
9
influence surface
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!