Due to the narrow row spacing of corn, the lack of light in the field caused by the blocking of branches, leaves and weeds in the middle and late stages of corn growth, it is generally difficult for machinery to move between rows and also impossible to observe the corn growth in real time. To solve the problem, a robot for corn interlines information collection thus is designed. First, the mathematical model of the robot is established using the designed control system. Second, an improved convolutional neural network model is proposed for training and learning, and the driving path is fitted by detecting and identifying corn rhizomes. Next, a multi-body dynamics simulation software, RecurDyn/track, is used to establish a dynamic model of the robot movement in soft soil conditions, and a control system is developed in MATLAB/SIMULINK for joint simulation experiments. Simulation results show that the method for controlling a sliding-mode variable structure can achieve better control results. Finally, experiments on the ground and in a simulated field environment show that the robot for field information collection based on the method developed runs stably and shows little deviation. The robot can be well applied for field plant protection, the control of corn diseases and insect pests, and the realization of human-machine separation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7038679 | PMC |
http://dx.doi.org/10.3390/s20030797 | DOI Listing |
PLoS One
January 2025
Renewable Energy Science and Engineering Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, Egypt.
This study presents a comprehensive comparative analysis of Machine Learning (ML) and Deep Learning (DL) models for predicting Wind Turbine (WT) power output based on environmental variables such as temperature, humidity, wind speed, and wind direction. Along with Artificial Neural Network (ANN), Long Short-Term Memory (LSTM), Recurrent Neural Network (RNN), and Convolutional Neural Network (CNN), the following ML models were looked at: Linear Regression (LR), Support Vector Regressor (SVR), Random Forest (RF), Extra Trees (ET), Adaptive Boosting (AdaBoost), Categorical Boosting (CatBoost), Extreme Gradient Boosting (XGBoost), and Light Gradient Boosting Machine (LightGBM). Using a dataset of 40,000 observations, the models were assessed based on R-squared, Mean Absolute Error (MAE), and Root Mean Square Error (RMSE).
View Article and Find Full Text PDFTransl Vis Sci Technol
January 2025
Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, Thailand.
Purpose: The purpose of this study was to develop a deep learning approach that restores artifact-laden optical coherence tomography (OCT) scans and predicts functional loss on the 24-2 Humphrey Visual Field (HVF) test.
Methods: This cross-sectional, retrospective study used 1674 visual field (VF)-OCT pairs from 951 eyes for training and 429 pairs from 345 eyes for testing. Peripapillary retinal nerve fiber layer (RNFL) thickness map artifacts were corrected using a generative diffusion model.
J Microsc
January 2025
Ningbo Key Laboratory of Micro-Nano Motion and Intelligent Control, Ningbo University, Ningbo, PR China.
The types and quantities of microorganisms in activated sludge are directly related to the stability and efficiency of sewage treatment systems. This paper proposes a sludge microorganism detection method based on microscopic phase contrast image optimisation and deep learning. Firstly, a dataset containing eight types of microorganisms is constructed, and an augmentation strategy based on single and multisamples processing is designed to address the issues of sample deficiency and uneven distribution.
View Article and Find Full Text PDFJ Acoust Soc Am
January 2025
University of Bath, Bath, United Kingdom.
Improved hardware and processing techniques such as synthetic aperture sonar have led to imaging sonar with centimeter resolution. However, practical limitations and old systems limit the resolution in modern and legacy datasets. This study proposes using single image super resolution based on a conditioned diffusion model to map between images at different resolutions.
View Article and Find Full Text PDFIET Syst Biol
January 2025
School of Computer, University of South China, Hengyang, Hunan, China.
Spatially resolved transcriptomics technologies potentially provide the extra spatial position information and tissue image to better infer spatial cell-cell interactions (CCIs) in processes such as tissue homeostasis, development, and disease progression. However, methods for effectively integrating spatial multimodal data to infer CCIs are still lacking. Here, the authors propose a deep learning method for integrating features through co-convolution, called SpaGraphCCI, to effectively integrate data from different modalities of SRT by projecting gene expression and image feature into a low-dimensional space.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!