A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

and Interaction in Dual-Species Biofilm. | LitMetric

AI Article Synopsis

  • The study focuses on the interactions between two bacteria, Streptococcus mutans and Actinomyces naeslundii, to understand their biofilm relationships.
  • The researchers created both single and dual-species biofilms and assessed their growth, stress responses to chlorhexidine, and metabolic activities, like lactic acid production.
  • Findings indicated that dual-species biofilms showed reduced viability and lactic acid production, but had higher resistance to chlorhexidine, with unique cluster formations observed under microscopy.

Article Abstract

The study of bacterial interaction between Streptococcus mutans and Actinomyces naeslundii may disclose important features of biofilm interspecies relationships. The aim of this study was to characterize-with an emphasis on biofilm formation and composition and metabolic activity-single- and dual-species biofilms of S. mutans or A. naeslundii, and to use a drip flow reactor (DFR) to evaluate biofilm stress responses to 0.2% chlorhexidine diacetate (CHX). Single- and dual-species biofilms were grown for 24 h. The following factors were evaluated: cell viability, biomass and total proteins in the extracellular matrix, 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide-"XTT"-reduction and lactic acid production. To evaluate stress response, biofilms were grown in DFR. Biofilms were treated with CHX or 0.9% sodium chloride (NaCl; control). Biofilms were plated for viability assessment. Confocal laser-scanning microscopy (CLSM) was also performed. Data analysis was carried out at 5% significance level. viability and lactic acid production in dual-species biofilms were significantly reduced. showed a higher resistance to CHX in dual-species biofilms. Total protein content, biomass and XTT reduction showed no significant differences between single- and dual-species biofilms. CLSM images showed the formation of large clusters in dual-species biofilms. In conclusion, dual-species biofilms reduced viability and lactic acid production and increased resistance to chlorhexidine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7074783PMC
http://dx.doi.org/10.3390/microorganisms8020194DOI Listing

Publication Analysis

Top Keywords

dual-species biofilms
28
lactic acid
12
acid production
12
biofilms
10
single- dual-species
8
biofilms grown
8
viability lactic
8
biofilms reduced
8
dual-species
7
interaction dual-species
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!