Purpose: To examine the effects of daily cold- and hot-water recovery on training load (TL) during 5 days of heat-based training.
Methods: Eight men completed 5 days of cycle training for 60 minutes (50% peak power output) in 4 different conditions in a block counter-balanced-order design. Three conditions were completed in the heat (35°C) and 1 in a thermoneutral environment (24°C; CON). Each day after cycling, participants completed 20 minutes of seated rest (CON and heat training [HT]) or cold- (14°C; HTCWI) or hot-water (39°C; HTHWI) immersion. Heart rate, rectal temperature, and rating of perceived exertion (RPE) were collected during cycling. Session-RPE was collected 10 minutes after recovery for the determination of session-RPE TL. Data were analyzed using hierarchical regression in a Bayesian framework; Cohen d was calculated, and for session-RPE TL, the probability that d > 0.5 was also computed.
Results: There was evidence that session-RPE TL was increased in HTCWI (d = 2.90) and HTHWI (d = 2.38) compared with HT. The probabilities that d > 0.5 were .99 and .96, respectively. The higher session-RPE TL observed in HTCWI coincided with a greater cardiovascular (d = 2.29) and thermoregulatory (d = 2.68) response during cycling than in HT. This result was not observed for HTHWI.
Conclusion: These findings suggest that cold-water recovery may negatively affect TL during 5 days of heat-based training, hot-water recovery could increase session-RPE TL, and the session-RPE method can detect environmental temperature-mediated increases in TL in the context of this study.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1123/ijspp.2019-0313 | DOI Listing |
Lasers Surg Med
December 2024
Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.
Objective: Physical treatment modalities, such as ablative fractional laser (AFL), electrocautery, and cryotherapy, are extensively used in the field of dermatology. This study aimed to characterize the short-term innate and adaptive immune responses induced by AFL compared with heat- and cold-based procedures.
Materials And Methods: Innate (CD11bLy6G neutrophils) and adaptive (CD8CD3 T cells) immune cell infiltration and histopathological changes were examined in murine skin on Days 1 and 7, following AFL, monopolar-electrocautery (RF), thermocautery, and cryotherapy.
Biomimetics (Basel)
October 2024
CYBRES GmbH, Research Center of Advanced Robotics and Environmental Science, Melunerstr. 40, 70569 Stuttgart, Germany.
This work focuses on biohybrid systems-plants with biosensors and actuating mechanisms that enhance the ability of biological organisms to control environmental parameters, to optimize growth conditions or to cope with stress factors. Biofeedback-based phytoactuation represents the next step of development in hydroponics, vertical farming and controlled-environment agriculture. The sensing part of the discussed approach uses (electro)physiological sensors.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
December 2023
Laboratory for Biomechanics and Biomaterials (LBB), Department of Orthopaedic Surgery, Hannover Medical School, Anna-von-Borries-Strasse 1-7, 30625, Hannover, Germany. Electronic address:
Loosening and infection are the main reasons for revision surgery in total hip arthroplasty (THA). Removing partially detached cemented implant components during revision surgery remains challenging and poses the risk of periprosthetic bone damage. A promising approach for a gentler removal of partially detached prostheses involves softening the PMMA-based bone cement by heating it above its glass transition temperature (T), thus loosening the implant-cement bond.
View Article and Find Full Text PDFFoods
October 2023
Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (LAQV-REQUIMTE), Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
Front Nutr
December 2021
Department of Neurosurgery, The 962nd Hospital of the PLA Joint Logistic Support Force, Harbin, China.
This study explored the effect of multiple-nutrient supplementation on muscle damage and liver and kidney function after vigorous exercise under heat. After an initial pilot trial comprising 89 male participants, 85 participants were recruited and assigned into three groups: a multiple-nutrient (M) group, a glucose (G) group, and a water (W) group. Multiple-nutrient supplements contain glucose, fructose, maltose, sodium, potassium, vitamin B, vitamin B, vitamin C, vitamin K, and taurine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!