We consider a model lipid plasma membrane, one that describes the outer leaf as consisting of sphingomyelin, phosphatidylcholine, and cholesterol and the inner leaf of phosphatidylethanolamine, phosphatidylserine, phosphatidylcholine, and cholesterol. Their relative compositions are taken from experiment; the cholesterol freely interchanges between leaves. Fluctuations in local composition are coupled to fluctuations in the local membrane curvature, as in the Leibler-Andelman mechanism. Structure factors of components in both leaves display a peak at nonzero wavevector. This indicates that the disordered fluid membrane is characterized by structure of the corresponding wavelength. The scale is given by membrane properties: its bending modulus and its surface tension, which arises from the membrane's connections to the cytoskeleton. From measurements on the plasma membrane, this scale is on the order of 100 nm. We find that the membrane can be divided into two different kinds of domains that differ not only in their composition but also in their curvature. The first domain in the outer, exoplasmic leaf is rich in cholesterol and sphingomyelin, whereas the inner, cytoplasmic leaf is rich in phosphatidylserine and phosphatidylcholine. The second kind of domain is rich in phosphatidylcholine in the outer leaf and in cholesterol and phosphatidylethanolamine in the inner leaf. The theory provides a tenable basis for the origin of structure in the plasma membrane and an illuminating picture of the organization of lipids therein.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7063444 | PMC |
http://dx.doi.org/10.1016/j.bpj.2020.01.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!