An internal sense of heading direction is computed from various cues, including steering maneuvers of the animal. Although neurons encoding heading and steering have been found in multiple brain regions, it is unclear whether and how they are organized into neural circuits. Here we show that, in flying Drosophila, heading and turning behaviors are encoded by population dynamics of specific cell types connecting the subregions of the central complex (CX), a brain structure implicated in navigation. Columnar neurons in the fan-shaped body (FB) of the CX exhibit circular dynamics that multiplex information about turning behavior and heading. These dynamics are coordinated with those in the ellipsoid body, another CX subregion containing a heading representation, although only FB neurons flip turn preference depending on the visual environment. Thus, the navigational system spans multiple subregions of the CX, where specific cell types show coordinated but distinct context-dependent dynamics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuron.2020.01.009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!