Deep convective transport of surface moisture and pollution from the planetary boundary layer to the upper troposphere and lower stratosphere affects the radiation budget and climate. This study uses cloud-parameterized Weather Research and Forecasting model coupled with Chemistry simulations to analyze the subgrid deep convective transport of CO at 12- and 36-km horizontal resolution in supercell and mesoscale convective systems observed during the 2012 Deep Convective Clouds and Chemistry field campaign and compares the simulation results with aircraft measurements and cloud-resolved simulations. The best Weather Research and Forecasting simulation of these storms was obtained with the use of the Grell-Freitas convective scheme. The default Weather Research and Forecasting model coupled with Chemistry subgrid convective transport scheme was replaced with a scheme to compute convective transport within the Grell-Freitas subgrid cumulus parameterization, which resulted in improved transport simulations. We examined the CO tendencies due to subgrid- and grid-scale convective transport. Results showed that the subgrid convective transport started earlier than the grid-scale convective transport. The subgrid-scale convective transport reached its maximum during the hour prior to the formation of the grid-scale constant-altitude detrainment layer. After that, both the subgrid- and grid-scale convective transport began to decrease. The subgrid-scale convective transport played a more significant role in the supercell case than the mesoscale convective system case. Subgrid contribution reached ~90% at the beginning of the storm and decreased to ~30% (17%) for the 36-km (12-km) domain 4 hr later.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6999733 | PMC |
http://dx.doi.org/10.1029/2018jd028779 | DOI Listing |
J R Soc Interface
January 2025
Department of Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden.
Culturing living cells in three-dimensional environments increases the biological relevance of laboratory experiments, but requires solutes to overcome a diffusion barrier to reach the centre of cellular constructs. We present a theoretical and numerical investigation that brings a mechanistic understanding of how microfluidic culture conditions, including chamber size, inlet fluid velocity and spatial confinement, affect solute distribution within three-dimensional cellular constructs. Contact with the chamber substrate reduces the maximally achievable construct radius by 15%.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
Mechatronics Engineering Department, Yildiz Technical University, Istanbul 34349, Turkey.
The efficient mixing of fluids at microscale dimensions presents challenges due to the dominant laminar flow regime which restricts convective mixing. This study introduces a numerical analysis of a novel microrobotic mixing system with a levitated propeller robot, driven by magnetic fields, within a Y-shaped microchannel with a square cross-section (500 × 500 μm). Our research investigates the fluid mixing effectiveness facilitated by the microrobot through various levitation heights and orientations to enhance the mixing index (MI).
View Article and Find Full Text PDFFoods
January 2025
Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China.
The quality of frozen crayfish () is challenged by freeze-thaw (FT) cycles during storage. The effect of freezing methods on the quality of crayfish during FT cycles was investigated by comparing physicochemical properties, microstructure, and myofibrillar protein (MPs) properties. Three methods were used for crayfish freezing, including air convective freezing (AF) at -20 °C and -50 °C, as well as liquid nitrogen freezing (LNF) at -80 °C.
View Article and Find Full Text PDFToxics
January 2025
Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.
In April 2023, a major dust storm event in Lanzhou attracted widespread attention. This study provides a comprehensive analysis of the causes, progression, and dust sources of this event using multiple data sources and methods. Backward trajectory analysis using the HYSPLIT model was employed to trace the origins of the dust, while FY-2H satellite data provided high-resolution dust distribution patterns.
View Article and Find Full Text PDFSoft Matter
January 2025
Microfluidics and Microscale Transport Processes Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
This work estimates Michaelis-Menten kinetics parameters for nutrient transport under varying flow rates in the soft roots of Indian mustard () using a plant fluidic device. To find the metallic components within the roots, inductively coupled plasma mass spectrometry (ICP-MS) analysis was performed. The flow rate-dependent metabolic changes were examined using Raman spectral analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!