Early diagnosis and prevention play a crucial role in the treatment of patients with ARDS. The definition of ARDS requires an arterial blood gas to define the ratio of partial pressure of arterial oxygen to fraction of inspired oxygen (PaO2/FiO2 ratio). However, many patients with ARDS do not have a blood gas measured, which may result in under-diagnosis of the condition. Using data from MIMIC-III Database, we propose an algorithm based on patient non-invasive physiological parameters to estimate P/F levels to aid in the diagnosis of ARDS disease. The machine learning algorithm was combined with the filter feature selection method to study the correlation of various noninvasive parameters from patients to identify the ARDS disease. Cross-validation techniques are used to verify the performance of algorithms for different feature subsets. XGBoost using the optimal feature subset had the best performance of ARDS identification with the sensitivity of 84.03%, the specificity of 87.75% and the AUC of 0.9128. For the four machine learning algorithms, reducing a certain number of features, AUC can still above 0.8. Compared to Rice Linear Model, this method has the advantages of high reliability and continually monitoring the development of patients with ARDS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7001976PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0226962PLOS

Publication Analysis

Top Keywords

patients ards
12
physiological parameters
8
blood gas
8
ards disease
8
machine learning
8
ards
7
method identifying
4
identifying acute
4
acute respiratory
4
respiratory distress
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!